72 ‘ . IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

f: InputFile

[

DiskFile InCoreFile

<InputFile, DiskFile>

Vector

0 address(DiskFile.Read)

1 address(DiskFile.Seek)

f: InputFile

[~

DiskFile InCoreFile

Legend

<InputFile, DiskFile>

<InputFile, InCoreFile>

Vector Vector

O Object
0

address(DiskFile.Read)

o

- address(InCoreFile.Read)

E Operation vector X 1

address(DiskFile.Seek)

-

address(InCoreFile.Seek)

E Variable

Fig. 3. (a) Before the assignment. (b) After the assignment.

the abstract type may be invoked on the object named by
the identifier. The content of the vector is determined by

_the implementation of the object currently named by the

identifier, since it consists of the addresses of the machine
code sequences that implement the operations. Consider
a variable f of abstract type a. The operations that may be
performed on f are determined by a; the addresses of the
appropriate code for these operations depend on the im-
plementation ¢ of the object named by f. Thus the pair
<a, c¢> uniquely determines an operation vector asso-
ciated with f. In Fig. 3(a), a is InputFile and c is DiskFile.
The vector has one element for each of the InputFile op-
erations read and seek; the values of these elements are
the addresses of the corresponding DiskFile routines.
When an assignment is made to f, the contents of its
operation vector may need to be changed. For example,
when an InCoreFile object is,assigned to f, the operation
vector associated with f must become appropriate to the
pair <InputFile, InCoreFile >, as shown in Fig. 3(b).
This scheme replaces the method lookup requ1red by
Smalltalk by a single indexing operation. The cost is an

- additional word of storage for the pointer to the operation

vector, and occasional recomputation of the elements of
these vectors on assignment. The operation vectors them-
selves may be shared between all identifiers of identical

‘abstract type that name objects with the same implemen-

tation, since it is the pait < abstract type, implementa-
tion> that determines the contents of the vector.

V. DISTRIBUTION SUPPORT

As previously stated, the principal objective of Emerald
is to simplify the construction of distributed programs.
System concepts such as concurrency, multiple nodes, and

object location are integrated into the language. This dif-
fers from, for example, EPL, where distribution is lay-
ered on an existing language through the use of a prepro-
cessor, and from Accent [27], where distribution is
provided as an operating system facility.

In Emerald, objects encapsulate the notions of process
and data and are the natural unit of distribution. At any
time each Emerald object is located at a specific node.
Conceptually, a node is an object of a system-defined
type. Node objects support node-specific operations,
thereby allowing objects to invoke kernel operations. Such
access to the underlying kernel is analogous to that pro-
vided by kernel ports in Accent.

Programmers may choose to ignore or exploit the con-
cept of object location. In a distributed system, objects
must be able to invoke other objects in a location-inde-
pendent manner. This facility makes network services
transparently accessible. In Emerald, locating the target

of an invocation is the responsibility of the system. An.

object is permitted to move between successive invoca-
tions, or even during an invocation. While applications
can control the placement of objects, most applications
can ignore location considerations since the semantics of
local and remote invocation are identical.

Nevertheless, there are two reasons for making location
visible to the programmer: performance and availability.
In a network, the efficiency of interobject communication
is obviously a function of location. An application can
colocate objects that communicate intensely and thus re-
duce the communication overhead. Alternatively, numer-
ical applications can achieve significant performance gains
by placing concurrent subcomputations on different nodes.
An object manager may increase availability by placing
replicas of its objects on different nodes.

