
Eric Jul, 1986-08-02

1 Groups in Emerald

In object-oriented programming, objects are composed of other objects. When an object moves,
it is usually desirable to move the object and its component objects together. For example, in a
mail system such as (ref. Edmas), a mail message may have references to the text of the message,
the message status, the time sent, and a mail box to which replies may be sent. The message text,
status, and date should be moved with the object since they are local to the mail message object.
The reply mail box should probably not be moved along since it presumably will be referenced only
once while the mail box owner will referenc,e it frequently.

Seen from a mail message sender's point of view, the mail message is a single object and one
should be able to move it without having to explicitly move its component objects, or even have
ltnowledge of their existence. This argues for a facility for grouping objects together so that they
may be moved together thus avoiding explicit reference to each group member.

In general, the decision to move an object depends on the cost of moving the object (which in
turn depends on the size of the object) and the usage pattern of the object. The purpose of moving
an object can be to increase the locality of reference, i.e., increase the percentage of invocations
performed locally. Large performance gains caii be achieved 1sy avoiding remote invocations since
local invocations are about 3 orders of magnitude faster than remote invocations1. Conversely,
large performance penalties may be incurred, if frequently communicating objects are inadvertantly
separated.

For some object references, it is obvious that the referenced objects should be moved along with
the containing object. Objects local to another object should obviously be moved with that object
since all references to the objects will then continue to be local invocations. This includes integers
and other immutable object. All immutable objects are always moved along allowing them always
to be invoked locally. Conceivably, large immutable objects could be left behind; see section X.X2
for a discussion of the replication of immutable objects. For global objects, there is no similar
inherently obvious choice. Using the mail example, the reply-to mail box should not move with the
mail message, while the other component objects should - even if they are global.

There is a performance reason for being able to move more than one object a t a time. Consider
the following program which moves an array and its elements:

i <- 1
loop

exit when i = n
move A(i) t o remoteNode

end loop

This loop performs the n moves synchronously one at a time each requiring at least one network
messages. If the elements were moved all at once then the move could be performed with consid-
erably fewer net messages.

'The current local invocation time for a global object is 21.3 ps while the remote invocation time is about 42 ms.

'A section to come some time in the future.

In summary, Emerald should include a facility for grouping objects together for the purpose of
object migration.

1.1 H o w t o c o m p o s e g r o u p s

There are several alternatives for providing a grouping facility. Implicit methods include compiler
decisions based on the static program text and dynamic methods where the run-time system predicts
future usage patterns and uses these to make mobility decisions.

1.1.1 Implic i t M e t h o d s

As mentioned above for some types of objects, the compiler may can readily decide to move certain
component objects since i t knows their usage patterns. However, in general, the compiler cannot
derive the usage pattern of a global object merely from the static program text. The run-time
system could keep track of usage patterns and use these as a prediction of future behaviour. This
has several drawbacks. First, past behaviour is not necessarily a good predictor of future behaviour,
for example, bimodal behaviour might lead to predictions that would cause worst case behaviour.
Second, this would require extensive monitoring of not only remote invocations where the relative
cost would be low, but also of local invocations where the relative cost would be significant. The
costs in terms of extra storage and administration alone seems to rule out such monitoring. Since
either the compiler or the run-time system can acquire enough information about global object
usage to be able to make mobility decisions, we conclude that the programmer must explicitly
either provide information regarding usage patterns or actually make the mobility decisions.

1.1.2 Explicit M e t h o d s

Groups could be explicitly constructed by the programmer, e.g., by placing a reference to each
group member in an array. The move statement would then take such an array as an operand and
would move the objects referenced in the array. In this way, the programmer could build move
groups by inserting and deleting object references from this set. Since groups actually are sets, it
would make more sense to introduce a standard type s e t and use it.

Explicitly building and maintaining groups has a drawback. Using the inail nlessage example
from above, if a mail box decides to move one of its mail messages, it would do so using a reference
to the mail message only - i t would not have sufficient knowledge to include the component object
of the mail message in the move group.

Instead of using special group objects then every object could be used as a group in the following
manner. Every object would uniquely determine a group which initially would only the object itself.

j o i n A t o B

The ' join statement, when executed, would cause the object referenced by A to join the group
identified by the object referenced by B. Whenever an object, X, is moved, all the members of the
group identified by X follow.

l e t A l eave B.

when executed, would remove the object referenced by A from the group identified by the object
referenced by B. An object could be a member of any number of groups and would be moved any
time any of the groups is moved.

Another solution is for the programmer to explicitly mark the objects which should be moved.
Pragmas could be attached to variables indicating that the object they reference should be moved
along with the object containing them as in

a t tached var a , b: T

The a t tached pragma would indicate that every time the object moved, the objects referenced by
a and b should follow. Thus the programmer could, in a very simple manner, specify the objects
to participate in any migration. Using the mail message example:

var replyToMailBox: MailBox
a t tached var t e x t : S t r i n g
a t tached var s t a t u s : MsgStatus
a t tached var sendTime: Time

The a t tached pragrna seems as powerful as the group idea since one can simulate the jo in
method grouping by merely declaring a set where each of the set members are themselves attached
to the set. Merely copying a reference to an object to an attached variable achieves the effect of
a join. Nil'ing a reference in the set effects a leave. It is also very simple to implement since it
allows for compile-time construction of groups. The compiler marlts the at tached variables in the
template for each data area.

In conclusion, i t seems that the simple idea of an at tached pragma seeins worktable and readily
implementable.

2 Atomicity of Move

How atomic should move be? The simplest (and most efficient) move protocol is not resilient in
the face of crashes. A more robust protocol enables the atomic transfer of objects across the net.

2.1 S i m p l e M o v e P r o t o c o l

The simplest move protocol sends the object to the destination node and immediately changes the
location of the object to the new destination - despite the fact that the object has not completed the
move yet. However, since the underlying message system assures reliable delivery in the absence
of crashes, it will only be a matter of time before the object is successfully transferred to the
destination node. The protocol is not resilient to crashes. If either node crashes d-uring a move
then the object is lost. The advantage of the protocol is its efficiency: It requires only one message
per move. Furthermore, the object may be piggybacked onto, e.g., an invocation message containing
call-by-move parameters, in which case the move can be performed at a very low cost.

2.2 A t o m i c T w o P h a s e M o v e P r o t o c o l

The atomic move protocol is resilient to node crashes. The protocol uses forwarding addresses3 to
commit migration transactions as described by Fowler (ref. to Fowler's thesis).

A move is initiated by sending the state of the object to the destination node marked as an
object in transit. The destination rebuilds the object and sends a "ready-to-commit" message to
the source. Upon reciept of this message, the source commits the move by:

Generating a new forwarding address consisting of (destination node, new timestamp) and
commiting it to stable storage.

Deallocating the local version of the object.

Sending the new fdrwarding address to the destination node.

The destiantion can abort the transaction a t any time before sending the "ready to commit" by
sending an "abort move" message to the source.

The forwarding address is the commit record in the two phase commit. In case of node crashes,
the object is not lost if it is checlipointed.

The protocol requires ,three messages: one message to send the object (possibly consisting
of multiple packets), one message to prepare for the commit, and finally one message to commit.
Furthermore, the object must be written to stable storage a t the destination and the commit record
must be written to stable storage a t both the source and the destination. Thus the total cost is
three networli messages (one of which could be multiple packet since it must contain the object
data area and its checkpoint image) and three writes t o stable storage.

2.3 P e r f o r m a n c e E s t i m a t e

The simple protocol can be performed a t a cost of one network message.
The two phase commit protocol seems suited for objects that have checkpointed, since they will

survive crashes even when both nodes involved in migrating crash.
An estimate of the performance of the protocols for small objects (i 500 bytes) may be obtained

by plugging in the following measured figures: Networli messages (estimated as 48% of remote
invocation time): 20 ms each. Write to stable storage (1 disk page under UNIX using fsync): 120
ms .

Simple protocol: 1 x 20 ms = 20 ms.
Two phase commit protocol: 3 x 20 ms + 3 x 120 ms = 420 ins (or roughly second).

Message Writes to Estimated
Protocol Count Stable storage time (ms)
Simple Send
Atomic 420 ms

3I use the term forwarding address in a slightly different manner than Fowler: a forwa.rding a.ddress is merely

the address of a node and a timestamp. Fowler includes the OID in the forwarding address, i .e . , he calls the triple

(OID, nodenumber, timestamp) a forwarding address while I leave out the OID. I will have to make this clear in my

discussion of the implementation of the location protocol (which Fowler would call the Object Finding Package).

Table 1: ~ s t i m a t e d performance of move.

2 . 4 Discussion

The two protocols both seem to have their place. For objects that have not checkpointed, it does
not make sense to ensure that the move commits across node crashes since the object itself is usually
lost anyway. Non-checkpointed objects are inherently short-lived and non-resilient to node crashes,
so it seems that the protocol for moving them should have the same characteristics. Objects that
have checkpointed are resilient to node crashes and it seems that this resiliency should not be lost
during migration. Therefore, the atomic move protocol appears to be the most suitable.

Summarizing, the simple protocol is not resilient to crashes, but is efficient, while the two phase
commit protocol is resilient to crashes, but is much more inefficient as it about 20 times slower.

