
Emerald:An Object-Based Language for Distributed ProgrammingbyNorman C. HutchinsonA dissertation submitted in partial ful�llmentof the requirements for the degree ofDoctor of PhilosophyUniversity of Washington1987

University of WashingtonAbstractEmerald:An Object-Based Language for Distributed Programmingby Norman C. HutchinsonChairperson of the Supervisory Committee: Professor Henry M. LevyDepartment of Computer ScienceDistributed systems have become more common, however constructing distributed ap-plications remains a very di�cult task. Numerous operating systems and programminglanguages have been proposed that attempt to simplify the programming of distributed ap-plications. We present a programming language called Emerald that simpli�es distributedprogramming by extending the concepts of object-based languages to the distributed en-vironment.Emerald supports a single model of computation: the object. Emerald objects includeprivate entities such as integers and Booleans, as well as shared, distributed entities suchas compilers, directories, and entire �le systems. Emerald objects may move between ma-chines in the system, but object invocation is location independent. The uniform semanticmodel used for describing all Emerald objects makes the construction of distributed appli-cations in Emerald much simpler than in systems where the di�erences in implementationbetween local and remote entities are visible in the language semantics.Emerald incorporates a type system that deals only with the speci�cation of objects |ignoring di�erences in implementation. Thus two di�erent implementations of the sameabstraction may be freely mixed in an Emerald program.Emerald has been implemented. The compiler accepts the responsibility of providingan e�cient implementation from object de�nitions, generating multiple implementationstuned to di�erent usage patterns from the same source code. We discuss these implemen-tation considerations and provide performance data to justify our claim that Emerald canbe e�ciently implemented.

Table of Contents
Chapter 1: Introduction . 11.1 Background . 11.2 Review of other work . 31.2.1 Operating systems . 31.2.2 Programming languages . 71.3 Motivation for Emerald . 101.4 Plan of action . 11Chapter 2: Overview of Emerald . 142.1 Invocation . 152.2 Abstract types . 162.3 Object creation . 192.4 Supporting multiple implementations . 202.5 Distribution . 232.6 Summary . 24Chapter 3: Types . 253.1 What are types? . 253.2 The purpose of programming language types 263.3 What should types do? . 293.4 Requirements for Emerald's type system . 313.5 Abstract types . 333.5.1 Informal de�nition of Emerald's type system 333.5.2 Formal de�nition of Emerald's type system 353.5.3 Types form a lattice . 403.5.4 Discussion . 413.6 Types are objects . 423.7 Static typing . 433.8 Polymorphism . 443.8.1 A �rst try . 443.8.2 A second try . 483.8.3 Formal de�nition of polymorphism 49

3.9 Comparison . 503.10 Summary . 50Chapter 4: Objects . 524.1 Object de�nition and creation . 524.1.1 A bit of history . 524.1.2 Object constructors . 544.2 Objects as types . 57Chapter 5: Other Features of Emerald . 625.1 Location dependent operations . 625.2 Call by move . 645.3 Reliability and availability . 655.4 Protection . 675.5 Concurrency . 685.6 Summary . 68Chapter 6: The Cost of Abstraction . 696.1 Getting rid of abstract types . 716.1.1 Determining concrete types . 746.1.2 The concrete type determination algorithm 756.2 Making objects local . 806.2.1 Determining locality . 816.2.2 The local object determination algorithm 826.3 A better algorithm . 846.4 Discussion . 85Chapter 7: Performance . 877.1 Performance goals . 877.2 Emerald performance . 897.2.1 Discussion . 907.3 Concrete type and locality determination 917.3.1 Success of our algorithm . 927.3.2 Discussion . 947.4 Summary . 95Chapter 8: Conclusion . 968.1 Contributions . 978.2 Further research . 988.3 Summary . 101Bibliography . 103iii

List of Figures2.1 Example abstract types and object implementations 172.2 A oneEntryDirectory object . 202.3 A oneEntryDirectory creator . 213.1 A polymorphic stack . 453.2 A polymorphic sorted collection . 464.1 Smalltalk instance/class/metaclass structure 564.2 Emerald object/creator structure . 574.3 A typed directory creator creator . 584.4 TypedDirectory with getSignature . 606.1 Directory . 736.2 A record-like object . 756.3 Concrete type determination example . 776.4 Concrete type determination example | dependency graph 77

List of Tables1.1 Models of computation . 137.1 MicroVax II primitive operation times . 897.2 Timings of Emerald invocations . 907.3 Performance of three detection algorithms | mail system 927.4 Performance of three detection algorithms | user interface 937.5 Overall frequency of invocations by type . 947.6 Frequency of invocations by type | discounting input/output 95

Chapter 1Introduction
Distributed computing systems are commonplace, and a number of operating systems andprogramming languages have been proposed to simplify the construction of distributedapplications. Distributed applications typically require the sharing of data between remoteentities. Existing systems and languages have either prohibited such sharing, or elseprovided two levels of support, one for private data and a separate one for shared data.This dissertation proposes (1) that supporting a uniform object model appropriate for bothprivate and shared data is a powerful tool for simplifying the construction of distributedapplications, and (2) that such an object model can be implemented e�ciently.The thesis will be proven by presenting a programming language, Emerald, designedto support a single object model, and by showing the positive e�ect that the model has onother aspects of the language design. We also demonstrate that applications are simpleto construct in the language, and that the language can be e�ciently implemented.1.1 BackgroundWe de�ne a distributed system as a collection of autonomous computers connected by alocal area network. This de�nition includes such things as o�ce automation systems andcomputer networks in university computer science (and other) departments, but speci�-cally excludes computers connected by long-haul networks as well as multiprocessors. We,

2also assume that the processes making up the system are homogeneous | some thoughtson accommodating heterogeneous systems will be made in Section 8.2.We use the terms machine, node, computer, and processor interchangeably to refer tothe computing elements that make up the system.Distributed systems as we have de�ned them are characterized by three common traits:1. The individual processors that make up the system may fail independently.2. Network communication is expensive relative to communication within a single pro-cessor.3. Network communication is unreliable. The network typically allows messages to belost or duplicated in transit, but guarantees (to a high probability) that messageswill not be undetectably corrupted in transit.Since the component processors of the system may fail independently, a distributed systemhas the potential of providing improved availability to its clients. So long as requireddata is on a machine that is up, a client can proceed with his work even though othercomponents of the system are down. However, this potential for added availability exactsa price; the programming of applications on a distributed system is more complicated thanthe programming of applications on a centralized system in several ways.First, applications are forced to deal with a partially available collection of processors.At any instant only a subset of the processors in the network are up, and this subsetchanges dynamically as processors crash and recover. In a centralized system, partialavailability is impossible since all components of the system fail and recover at the sametime.Second, distributed applications must deal with network communication which hasdi�erent semantics from local communication. Locally, entities can communicate throughshared memory. At the network level there is no shared memory; the network providesas communication primitives only message sending and receiving. Furthermore, messages

3accepted for network delivery are not guaranteed to be delivered. Messages can be delayedfor arbitrary periods of time, they can be lost and never delivered, or they can be deliveredmultiple times.1.2 Review of other workThe construction of distributed applications requires support from the language, the op-erating system, or both. Historically, dealing with inter-computer communication hasbeen the task of operating systems. Programmers of distributed applications typicallyprogrammed in sequential languages and made use of operating system routines to sendmessages, receive messages, or inquire about the status of the processors that make upthe system.Not too long ago, concurrent programs were written in the same manner, with appli-cation programmers writing in sequential languages utilizing operating system routines tomanage the creation and destruction of processes as well as mutual exclusion and syn-chronization between these processes. The advent of concurrent programming languagessuch as Concurrent Pascal [BH79], CSP [Hoa78], and Mesa [MMS79] greatly simpli�edthe construction of concurrent programs by providing mechanisms for achieving mutualexclusion (through monitors or conditional critical regions) and synchronization (throughcondition variables, semaphores or synchronous message passing). Recent proposals fordistributed programming languages have attempted to achieve a similar simpli�cation inthe construction of distributed applications. In reviewing previous e�orts to address theissues of distributed computing, we will therefore examine both operating system andprogramming language approaches.1.2.1 Operating systemsIn general, distributed operating systems have attempted to provide mechanisms for dis-tributed computing that are independent of particular programming languages and there-

4fore universally applicable.Hydra [WCC+74] was an object-based operating system designed for the C.mmp com-puter at Carnegie-Mellon University. While C.mmp is a multiprocessor rather than adistributed system, the design of Hydra greatly inuenced the designs of later distributedsystems. Every Hydra entity is an object and is addressed by a capability that includes areference to the object as well as a set of rights for performing operations on the object.The system directly supports objects and includes primitives to create new objects andnew object types and perform operations on objects addressed by capabilities. Procedures,local name spaces (activation records), and processes are implemented as kernel de�nedobject types.The StarOS operating system [JJD+79] was implemented at Carnegie-Mellon Univer-sity in the late 70's as the operating system for the CM* multi-microprocessor computer.It extends the ideas of the Hydra design to more e�ciently support many small typedobjects named by capabilities.In addition to its support for passive objects, StarOS also supports cooperating, com-municating processes organized as task forces which are the active entities in the system;processes are not objects. Process communication and synchronization are performedby accessing shared objects. In contrast to Hydra, where invocations are normally syn-chronous, a StarOS invocation is normally executed in a newly created process in parallelwith its invoker; the invoking process may choose if and when it will await a reply fromthe invoked function.The Eden system [AH85, Bla85] was constructed at the University of Washingtonbetween 1980 and 1985. Eden extends the concepts of Hydra and StarOS to distributedsystems and is an integrated, distributed, object-based operating system. Eden objects arenamed by capabilities and may contain multiple processes. In addition, objects are mobile;they may migrate from machine to machine in the network. Despite this, invocation of anoperation on an object is location-independent.

5A programming language for constructing Eden objects was also developed; it is dis-cussed in Section 1.2.2.While DEMOS [BHM77], the operating system for the CRAY-1 computer developedat the Los Alamos Scienti�c Laboratory, is not distributed, it introduced ideas found ina large number of later distributed systems. It is primarily a message-passing system,supporting tasks, or processes, and one-way communication channels known as links.Communication over links is primarily asynchronous, with a non-blocking send primi-tive and a receive primitive that can be either blocking, non-blocking, or interrupt-driven.The kernel also supports a call primitive that combines the three operations of link cre-ation, message sending, and reply receipt.The DEMOS idea of supporting links as the primary mechanism for communicationwas extended to a distributed environment in the design of the DEMOS/MP operatingsystem [PM83]. DEMOS/MP has all the facilities of the original DEMOS design, allowingusers to access the distributed computing system in the same manner as the originalcentralized system. In addition, DEMOS/MP allows for processes to migrate within thenetwork to perform load sharing.The V system [CZ83] developed by David Cheriton at Stanford University is an ex-tension of the earlier Thoth single machine operating system [CMMS79] to a distributedenvironment. Both Thoth and V owe their model of computation to DEMOS. V sup-ports processes that communicate primarily through message passing. V supports onlysynchronous communication of small �xed size (32 byte) messages. The communicationprimitives are send which sends a message to a speci�ed process and blocks until a replyis received, receive which blocks until a message can be received, reply, which replies to amessage overwriting the original contents of the send bu�er, and forward, which forwardsa previously received message to another process. In addition, V allows processes execut-ing in the same team to communicate using shared memory in a completely uncontrolledmanner.

6A number of later operating systems, including RIG, Accent, Mach, and Amoeba,combine aspects of the architecture of both Hydra and DEMOS. Each of them supportprocess and message passing at the lowest layer, on top of which is constructed an objectmanagement system.Rochester's Intelligent Gateway or RIG [LGFR82] was an early attempt to build ageneral purpose distributed operating system for a network that included more than onekind of machine. There are two ways to look at the model of computation that thesystem supported. At the highest level of abstraction, the system consists of a numberof resources (or objects) that are managed by servers. These resources are accessibleto clients via invocation of operations de�ned by the servers. Resources are protectedfrom direct manipulation by clients, so the system has much of the avor of object-basedsystems like Hydra and StarOS. However, the protection mechanism in RIG is di�erentfrom that used in object-based systems. In RIG the server gives out handles for resourcesbut maintains the resource data privately. The client can gain access to the resource onlyby making requests of the server.At the lowest level, a RIG system consists of processes that communicate via messages.The message communication system provides for synchronous or asynchronous messagesending and receipt, as well as an emergency message system for handling high prioritymessages. Messages are addressed by the pair <process number, port number>. Boththe process number and port number are local. Process numbers are relative to themachine the process is on, and port numbers are relative to the process that owns the port.Processes on remote machines are addressed by creating a local alias to the remote processnumber. Once such aliases have been created, interprocess communication is both networkand machine transparent. That is, a process need not be concerned about the location ofthe target process nor the kind of machine that it is executing on to communicate withit. However, the creation of local aliases is the responsibility of the programmer; it is nothandled automatically by the system. Some processes in the system are viewed as clients

7and others as servers, but they are indistinguishable at the lower level.The Accent operating system [RR81] is a successor of the RIG system. Like RIG, thesystem provides processes and both synchronous and asynchronous communication. Inaddition, the operating system supports ports, which are protected kernel objects to whichmessages are addressed. Processes are allowed to manipulate ports only by using process-local port identi�ers. This extension of the message system allows for more protection,as ports cannot be fabricated easily. In addition, since ports identi�ers can be translatedby the kernel when sent in messages, the scheme allows ports to be used to name servicesindependent of the process which implements the service.The latest version of Accent is named Mach [JR86], and has extended the ideas inAccent to a distributed environment composed of multi-processors. Mach has also achieveda considerable simpli�cation of the notions of both process and message passing overAccent.The Amoeba system [TvR85] presents the user with a model similar to that of RIG,although the underlying architecture is quite di�erent. The kernel of the operating systemprovides only synchronous inter-process communication. At a higher level of abstraction,the system consists of a number of servers that manage objects named by capabilities; theobjects are accessible only through the invocation of operations.1.2.2 Programming languagesIn addition to operating system e�orts to simplify the construction of distributed appli-cations, a number of programming languages have been designed with this goal in mind.Like the distributed operating systems just described, these may be broadly categorizedby whether they support processes or objects as their primary computation model.CSP is Hoare's proposal for structuring distributed applications as groups of com-municating sequential processes [Hoa78]. It was originally a means for expression ofinter-process communication and non-determinism, and not a full programming language.Processes synchronize and communicate using synchronous, non-bu�ered message pass-

8ing (termed input/output). The language has been extended a number of times [BRV84,May83]. These extensions vary in the way communication targets are named, whetherprocesses may be dynamically created, and how communication is typed (if at all).The Programming Language in the Sky (PLITS) project at the University of Rochester[Fel79] is not a single programming language; it is a methodology through which any bodylanguage can be transformed into a distributed programming language. PLITS processes(also called modules) communicate by sending messages to other processes. In contrast toother distributed programming languages, messages in PLITS are not typed. A messageconsists of an arbitrary number of name/value pairs.The languages NIL [SY83] and LYNX [Sco86] extend the previous languages thatsupported processes and message passing by making the links over which messages are sent�rst class values in the language. NIL processes communicate by sending and receivingmessages through strongly typed ports rather than by directing them at named processes.LYNX incorporates the link idea of the DEMOS operating system into a programminglanguage without losing the exibility to dynamically create and bind the ends of linksto processes. It adds to DEMOS both secure type checking and the ability to createconcurrent threads of control within a process to conveniently manage multiple concurrentconversations.The languages Distributed Processes (DP), Brinch Hansen's language for the con-struction of distributed real-time applications [BH78], and Ada, The Department of De-fense's standard language for embedded systems [Ada83] also support processes (or tasks).Rather than communicating through message passing, communication in these languagesis accomplished by the invocation by one process of operations de�ned in another. Thusprocesses in these languages serve a dual purpose. Since a process is an independentthread of control, processes serve as the mechanism for de�ning concurrent execution.Secondly, because they export operations which may be invoked by other processes, theymay be viewed as objects. In fact, Brinch Hansen claims that processes in DP unify the

9Concurrent Pascal concepts of process, module, and class [BH78, pp. 940].Other distributed programming languages provide direct support for only objects.Cook's original StarMod [Coo79] is a derivative of Brinch-Hansen's DP that supports\processor modules", in which a number of server processes can execute concurrently.Operations are exported by these processor modules, and may be serviced by any processwithin the module, or by a process created speci�cally to service a request.The Mesa language [MMS79] was augmented with remote procedure call by BruceNelson [Nel81]. RPC provides almost transparent remote procedures to a procedure basedlanguage.The Synchronizing Resources (SR) language implemented at the University of Arizona[And82] generalizes and uni�es an number of earlier proposals. Distributed applicationsare constructed out of resources, which may contain multiple processes and may exportoperations which these processes implement. SR provides two mechanisms for invokingoperations (call and send), and two for implementing operations (proc's and in state-ments). The various combinations of these mechanisms provide support for procedurecall, rendezvous, process creation, and message passing.The Argus programming language and system [Lis84] is a very ambitious attemptto de�ne a language in which applications with extreme reliability requirements may beconstructed. Argus applications consist of guardians which are abstractions of physicalmachines. Intra-guardian communication is through shared data while inter-guardiancommunication is by value. Argus achieves its high reliability through a transaction schemewhich is automatically administered by the system on remote operations.The Eden distributed operating system is programmed by means of the Eden Pro-gramming Language (EPL) [ABLN85, Bla85]. EPL provides support for synchronous,strongly-typed invocation of Eden objects named by capabilities. The EPL run-time sys-tem supports multiple concurrent processes inside each object as well as providing supportfor the packaging and unpackaging of invocation parameters in messages.

101.3 Motivation for EmeraldExisting distributed programming languages and systems have each supported two di�er-ent computational models. One model is appropriate for constructing distributed entitiesthat may wish to migrate from machine to machine in the network, communicate with en-tities on other machines, or be remotely referenced. Such entities are passed by referencewhen passed as arguments, thus facilitating sharing. The other computational model maybe used only to construct entities which are private to a single distributed entity.The existence of these two models is not an accident. Two very di�erent implemen-tation styles are available in a distributed system. For private entities, constrained to beaccessed by only one distributed entity, traditional shared memory approaches providefor an e�cient implementation. For distributed entities that are accessible from remotemachines, a more general (and therefore, more expensive) implementation style is appro-priate.The languages CSP, PLITS, DP, Ada, NIL and LYNX and the operating systems Ac-cent/Mach, Amoeba, RIG, DEMOS/MP, and V all support processes as their distributedentities. Within a process, traditional programming language data types such as arraysand records are supported. StarMod and RPC support distributed modules whose opera-tions may be invoked remotely, as well as ordinary data which is private to a module. SR'sresources form the distributed entities for that language; within a resource data is accessedby shared memory. In Argus the distributed entities are guardians, while CLU objectsas de�ned by clusters form the private entities. Eden objects are Eden's distributed en-tities, which consist of Concurrent Euclid modules, monitors, records, and arrays. Thisinformation is summarized in Table 1.1.When two di�erent models of computation exist, the programmer of a distributedapplication must decide which to use for each entity in his application. Since the semanticsof the two models are di�erent, once an object is implemented in one style it must berewritten for use as the other. For example, if we build a tree out of nodes that are Eden

11objects, and later need a tree for strictly internal use within some other object we musteither design and code a di�erent tree or su�er the ine�ciencies of the much more generalimplementation. In constructing a distributed document editor in Argus the di�erencein semantics between guardians and CLU objects caused a guardian to be used where acluster may have been more appropriate [GSW86].Since these two computational models so closely parallel the physical structure of thesystems on which they are implemented, one is tempted to believe that the existence ofthe two models is natural, and therefore desirable. The same could be said of primarymemory and secondary storage in the pre-virtual-memory days. The relative access timeswere so di�erent that it seemed natural to keep the two concepts separate, and force theprogrammer to explicitly transfer data between the two. In spite of this, virtual memoryhas proven very successful.In contrast to these distributed languages, centralized languages such as Smalltalk[GR83], Alphard [WLS76], and CLU [LAB+79], as well as the multi-processor operatingsystems Hydra and StarOS, have each supported only a single abstraction mechanism.These languages have demonstrated the utility of a single object model, at least in acentralized environment.The thesis of this dissertation is that (1) a single object model can be de�ned thatis appropriate for both distributed entities and private ones, and (2) it is possible toimplement it so as to take advantage of the physical structure of the distributed system.1.4 Plan of actionWe defend this thesis by presenting a new programming language called Emerald thatis based on a single object model and has been implemented with e�ciency comparableto existing languages. The basis of the Emerald design is the belief that a single objectmodel is appropriate for constructing distributed applications, and in addition can bemade performant [BHJL86, BHJ+87].

12Chapter 2 provides an overview of the Emerald programming language. This overviewis meant to provide the background for the more detailed discussion in the remainder ofthe dissertation. Motivation and justi�cation for the design decisions is deferred untillater chapters, which discuss the impact of the single object model on other features ofthe language. Chapter 3 discusses the type system of Emerald, which is rather unique,primarily due to the object model and its support for late binding. Chapter 4 discussesthe de�nition and creation of objects in Emerald. Chapter 5 discusses other features ofthe language including location dependent operations, support for reliability, and supportfor concurrency.An important criticism of a single object model is that it is less e�cient than supportingmultiple models, each tuned to a particular style of implementation. Chapters 6 and 7address this issue by discussing our �rst implementation of Emerald. Chapter 6 discusseshow the compiler is able to generate multiple implementations for objects from the samesource code. These implementations are tuned to particular usage patterns, and allow thecost of an object to be appropriate to the generality required by it. Chapter 7 presentsperformance data showing that an e�cient implementation of Emerald is in fact possible.The thesis concludes with a summary of its contributions and some ideas for furtherresearch.

13
System Distributed PrivateName Entity EntityAccent/MachAdaAmoebaCSPDEMOS/MPDPLYNXNILPLITSRIGV

Process data
Mesa RPCStarMod Module dataSR Resource dataArgus Guardian CLU ClusterEden/EPL Eden Object CE dataEmerald object objectTable 1.1: Models of computation

Chapter 2Overview of Emerald
Emerald attempts to extend the utility of a single object model to distributed systems.The Emerald object is the only abstraction mechanism in the language, and incorporatesthe notions of data, procedure, and process. All entities in Emerald are objects. Thisincludes small entities, such as Booleans and integers, as well as large entities, such asdirectories, compilers, and entire �le systems. All objects exists so long as a means isavailable to refer to them. Each Emerald object consists of:� A name, which uniquely identi�es the object within the network.� A representation, which, except in the case of a primitive object, consists of refer-ences to other objects.� A set of operations, which de�ne the functions and procedures that the object canexecute. Some operations are exported and may be invoked by other objects, whileothers may be private to the object.� An optional process, which is started after the object is initialized, and executes inparallel with invocations of the object's operations. An object without a process ispassive and executes only as a result of invocations, while an object with a processhas an active existence and executes independently of other objects.

15Each object also has several attributes. An object has a location that speci�es the node onwhich that object is currently located. Emerald objects may be de�ned to be immutable.This simpli�es sharing in a distributed system, since immutable objects can be freelycopied. Immutability is a logical assertion on the part of the programmer rather than aphysical property; the system does not attempt to check it.Emerald supports concurrency both between objects and within an object. Within thenetwork many objects can execute concurrently. Within a single object, several operationinvocations can be in progress simultaneously, and these can execute in parallel with theobject's internal process. To control access to variables shared by di�erent operations, theshared variables and the operations manipulating them can be de�ned within a monitor[Hoa74, BH79]. Processes synchronize through built-in condition objects. An object'sprocess executes outside of the monitor, but can invoke monitored operations should itneed access to shared state.Each object has an optional initially section | a parameterless operation that executesexactly once when the object is created and is used to initialize the object state. Whenthe initially operation is complete, the object's process is started and invocations can beaccepted.2.1 InvocationThe only mechanism for communication in Emerald is through invocation. An Emeraldobject may invoke some operation de�ned in another object, passing arguments to theinvocation and receiving results. Assuming that target is an object reference, the phrase:target.operationName[argument1, argument2]means execute the operation named operationName on the object currently referenced bytarget, passing argument1 and argument2 as arguments. Invocations are synchronous; theprocess performing the invocation is suspended until the operation is completed (or untilthe run-time system determines that the operation cannot be completed, see Section 5.3).

16An alternative explanation is that the process performing the invocation continues intothe invoked object and provides the thread of control that executes the code implementingthe operation. All arguments and results of invocations are passed by object reference.That is, references are passed enabling the caller and callee to share the argument andresult objects. This same parameter passing semantics is called call by sharing in CLU.2.2 Abstract typesCentral to Emerald is the concept of abstract type. An abstract type de�nes a collection ofoperation signatures, that is, operation names and the types of their arguments and results.All identi�ers in Emerald are typed: the programmer must declare the abstract type ofthe objects that an identi�er may name. An abstract type is represented by an Emeraldobject that speci�es such a list of signatures. For example, if the variable MyMailbox isdeclared as:var MyMailbox : AbstractMailboxthen any object that is assigned to MyMailbox must implement (at least) the operationsde�ned by AbstractMailbox.We say that the abstract type of the object being assigned must conform to the abstracttype of the identi�er. Conformity is the basis of type checking in Emerald. Informally, atype S conforms to a type T (written S �> T) if:1. S provides at least the operations of T (S may have more operations).2. For each operation in T, the corresponding operation in S has the same number ofarguments and results.3. The abstract types of the results of S 's operations conform to the abstract types ofthe results of T 's operations.4. The abstract types of the arguments of T 's operations conform to the abstract types

17

Any

InputFile OutputFile

Read

Seek

Write

Seek

OpticalDiskFile InputOutputFile

Read

Write

Seek

InCoreFile DiskFile

Read
Seek
Write

Read
Seek
Write

Read

Seek

Legend

Abstract Type

Implementation

Name
Operation

Figure 2.1: Example abstract types and object implementationsof the arguments of S 's operations (i.e., arguments must conform in the oppositedirection).Note that conformity is a one-way relationship between abstract types: A �> B doesnot imply that B �> A. In fact, if A �> B and B �> A, then A and B are identicaltypes. Abstract types therefore form a partial order, with conformity as the orderingfunction. This partial order is more fully discussed in Section 3.5.3. Emerald's notion oftype conformity is discussed in detail in Chapter 3.The relationship between abstract types and object implementations is many-to-one inboth directions. A single object may conform to many abstract types, and an abstract typemay be implemented by many di�erent objects. Figure 2.1 illustrates these relationships.In the �gure, A above B means A �> B.

18The object DiskFile implements the abstract type InputOutputFile, the abstract typesInputFile and OutputFile (which require only a subset of the InputOutputFile operations),and also the abstract type Any (which requires no operations at all). The abstracttype InputOutputFile illustrates that an abstract type may have several implementations,perhaps tuned to di�erent usage patterns. Temporary �les may be implemented in primarymemory (using InCoreFile objects) to provide fast access while giving up permanence inthe face of crashes. On the other hand, permanent �les implemented using DiskFile wouldcontinue to exist across crashes.Since Emerald objects may conform to more than one abstract type, it may be appro-priate to change one's view of a particular object at run-time. This change may eitherbe a widening, which corresponds to a move up in the abstract type partial order, or anarrowing which corresponds to a move down. Narrowing requires no run-time check ofits validity, since any object conforming to some type in the partial order also conformsto all types that it is greater than (with respect to �>) . Widening on the other handrequires that the system check that the given object in fact does support the operationsrequired by the new type.An example of where such view changes are required is in the implementation of adirectory system. Suppose we de�ne the abstract type Directory as follows:const Directory == type Directoryoperation Add [name : String, thing : Any]operation Lookup[name : String] ! [thing : Any]operation Delete[name : String]end DirectorySuppose further that we have a variable declared asvar f : InputOutputFilethat currently names a �le object. If we wish to insert this �le into a directory d, we mayexecute the invocation:d.Add [\my�le", f]

19Since the second argument to Add on directories has type Any, we narrow the type of f :InputOutputFile to Any. Now suppose we want to get the same object back out of thedirectory d. We would like to execute the assignment:f d.Lookup[\my�le"]However, the type of the result of Lookup is Any, and Any does not conform to In-putOutputFile, the type of f. Therefore, the preceding statement is not type-correct, andis rejected by the compiler. On the other hand, we know that the object that will be re-turned by executing Lookup on d with the argument \my�le" is in fact an InputOutputFile,and so we insert an explicit change of view.f view d.Lookup[\my�le"] as InputOutputFileThe compiler cannot guarantee that this widening will be legal at run-time; a run-timecheck is generated at this point.2.3 Object creationIn most object-based systems, new objects are created by an operation on a class (inSmalltalk or Simula terms) or type object (in Hydra or StarOS terms). This class objectde�nes the structure and behavior of all of its instances. In addition, the class objectresponds to new invocations to make new instances.In contrast, an Emerald object is created by executing an object constructor. An objectconstructor is an Emerald expression (bracketed by object <name> and end <name>)that de�nes the representation, the operations, and the process of an object. For example,suppose the Emerald program in Figure 2.2 is executed; it results in the creation ofa single object. If we wished to create more oneEntryDirectories we would embed theobject constructor of Figure 2.2 in a context in which it could be repeatedly executed,such as the body of a loop or operation. This is illustrated in Figure 2.3. Execution ofthis example creates the single object speci�ed by the outermost object constructor. Thatobject exports an operation called Empty; invoking the Empty operation executes the inner

20const myDirectory : Directory == object oneEntryDirectoryexport Add, Lookup, Deletemonitorvar name : String nilvar An : Any niloperation Add [n : String, o : Any]name nAn oend Addfunction Lookup[n : String] ! [o : Any]if n = name theno Anelseo nilend ifend Lookupoperation Delete[n : String]if n = name thenname nilAn nilend ifend Deleteend monitorend oneEntryDirectoryFigure 2.2: A oneEntryDirectory objectobject constructor, creating a new object that conforms to the abstract type Directory.The code generated when compiling an object constructor is called the concrete type ofthe objects created by execution of the constructor and serves to de�ne the structure ofthese objects as well as provide the implementation for the operations de�ned on them.Conceptually, each object so created possesses its own copy of the code for Add, Lookup,and Delete. In practice, there will be at most a single shared copy of the concrete type oneach machine.2.4 Supporting multiple implementationsThe most important goal of the Emerald design is the support of a uniform object model.The semantics of all objects, whether large or small, local or distributed, must be consis-

21
const myDirectoryCreator == immutable object oneEntryDirectoryCreatorexport Emptyoperation Empty ! [result : Directory]result object oneEntryDirectoryexport Add, Lookup, Deletemonitorvar name : String nilvar An : Any niloperation Store[n : String, o : Any]name nAn oend Storefunction Lookup[n : String] ! [o : Any]if n = name theno Anelseo nilend ifend Lookupoperation Delete[n : String]if n = name thenname nilAn nilend ifend Deleteend monitorend oneEntryDirectoryend Emptyend oneEntryDirectoryCreatorFigure 2.3: A oneEntryDirectory creator

22tent. This uniformity should hold both for the programmer who builds objects and types,and for the application that invokes them. On the other hand, for objects to be useful,they must be e�ciently implemented.In Emerald, all objects are coded using the single object de�nition mechanism wehave just illustrated. At compile time, the Emerald compiler chooses among several im-plementation styles for the object, picking one that is appropriate to the object's use.Three di�erent implementation styles are used; each makes a di�erent tradeo� betweenrepresentation e�ciency, invocation overhead, and generality.� Global objects are those that can be moved within the network and can be invokedby other objects not known at compile time (in other words, references to themcan be exported). These objects are heap allocated by the Emerald kernel and arereferenced indirectly through a descriptor. An invocation may require a remoteprocedure call.� Local objects are local to another object (i.e., a reference to them is never exportedfrom that object). They are heap allocated by compiled code. These objects nevermove independently of their enclosing object, and are referenced with a pointer totheir data area. An invocation may be implemented by a local procedure call or byinline code.� Direct objects are local objects except that their data area is allocated directly inthe representation of the enclosing object. They are used mainly for built-in types,structures of built-in types, records, and other simple objects whose organizationcan be deduced at compile time.Thus, Emerald is similar to the programming languages and operating systems sur-veyed in Section 1.2 in that there are several di�erent implementation styles with varyingperformance characteristics. However, unlike these languages, the implementation di�er-ences are hidden from the programmer. The compiler chooses the best implementation

23based on compile time information. In many cases, the compiler can also determine theconcrete type of objects and can use this information for further optimizations. If the com-piler knows only the abstract type then it must assume the most general object invocationmechanism.2.5 DistributionEmerald is designed for the construction of distributed applications. As previously stated,we believe that objects are an excellent way of structuring such programs because theyprovide the units of processing and distribution. This belief has been con�rmed by ourexperience with distributed applications in Eden [AH84, AH85, ABBW84, Bla85].When constructing distributed applications for Eden, we noticed that distributed ap-plications fall into two distinct classes. Some applications, such as replicated nameserversand distributed databases, have only come into existence because of distributed envi-ronments. The distributed nature of the system is important to the speci�cation of thefunction that these applications are to perform. To construct such applications, it mustbe possible to control the locations of the objects that make up the application. For ex-ample, it must be possible to ensure that two replicas of an important resource are placedso that a single failure cannot make them both inaccessible. To facilitate the constructionof these applications Emerald provides primitives to control the placement and movementof objects.Other distributed applications are really displaced centralized applications such as mailsystems and compilers. Their construction in a distributed environment is merely compli-cated by distribution. To assist in the construction of these applications, the manipulationand invocation of operations on objects in Emerald, as it was in Eden, is location inde-pendent. An object need not concern itself with the location of any other object that ituses.As a distributed programming language, Emerald is useful for the construction of both

24classes of distributed application: those that are born to distribution, as well as those thathave had distribution thrust upon them.2.6 SummaryWe have briey described and illustrated the programming language Emerald. Its mostnotable feature is the single object model which may be used to construct all objects,ranging from local data abstractions including records and arrays to entire distributedapplications including multiple concurrent processes such as �le systems or compilers.Emerald can perhaps be most easily understood by enumerating the features that itshares with existing languages, and those that are unique to it. It incorporates the singleobject model of Smalltalk, the syntax of an Algol-like language and the distribution relatedfeatures of Eden (including mobile objects) in an e�cient, compiled language. Its novelfeatures include support for abstract types, multiple compiler-generated implementationsfrom the same source code for di�erent situations, and object constructors for objectde�nition and creation. With this background, the following three chapters discuss indetail the important Emerald design decisions; the next chapter discusses types.

Chapter 3Types
This chapter describes the type system of Emerald and, more importantly, discusses thefactors that a�ected its design.3.1 What are types?The role of types in programming languages has received a great deal of attention inthe literature. The discussion has lately focused on polymorphism, type inference, andwhether Type (the type of all types) is itself a type. We will discuss these issues later. Wewish to �rst answer a much more fundamental question: what are programming languagetypes?The development of typed systems can be best understood by examining some untypedones. There are a number of examples of untyped universes:� Sets in mathematics� Bit strings in computer memory� S-expressions in lispEach of these universes is untyped, or, more correctly, each of these universes has onlyone type, therefore all values in the universe have the same type. Consider, for example,the universe of bit-strings in computer memory. In most computer architectures, memory

26is not typed. That is, integer values, machine instructions, multi-linked data structuresand matrices of real numbers are all represented as bit strings. The interpretation of onebit string as a sequence of instructions for the processor to execute and another bit stringas a matrix of real numbers is a matter of convention. It helps us to understand whatis going on to classify these bit strings by their intended use; we call some bit stringsprograms and others data. We make these distinctions to organize our own universes,and because performing arbitrary operations on bit strings without regard for their typesmay be meaningless. For example, it is usually meaningless to add oating point data tomachine instructions. On the other hand, there is nothing fundamental in the machinethat prevents us from using data improperly, for example, executing real matrices asprograms or manipulating programs as integers.Type systems are a natural outgrowth of our informal classi�cation of things. Infor-mally, a type in a programming language encapsulates the notion of a collection of entitieswith similar attributes and operations. For example, we think of the integers as a typewith operations like multiplication, addition, and division.3.2 The purpose of programming language typesThe previous section leads us to the conclusion that types are an outgrowth of our e�ortsto classify the things that we deal with. That is, types help us to group similar objectstogether and concentrate on the features that they have in common.Let us look at the stated purposes of types in programming languages. According toMark Manasse [Car86], the fundamental problem addressed by a type theory is to ensurethat programs have meaning. Donahue and Demers [DD85] claim that the purpose of aprogramming language type system is to prevent the misinterpretation of values | notto ensure that a meaning exists, but to make that meaning independent of representationdiscussions. According to Cardelli and Wegner [CW85]:A major purpose of type systems is to avoid embarrassing questions about

27representations, and to forbid situations in which these questions might comeup. A type may be viewed as a set of clothes (or a suit of armor) that protectsan underlying untyped representation from arbitrary or unintended use.In fact, Donahue and Demers state that a programming language is strongly-typed exactlywhen it prevents this misinterpretation of values [DD85].In addition to protection from misinterpretation, type systems serve other roles inprogramming languages. One thing that we expect from a typed programming languageis noti�cation from the system when we have committed a type error in programming.Such type checking provides early feedback to the programmer that he has committed aprogramming error.Let us compare a brief program fragment written in CLU (a typed language) to onewritten in Smalltalk (an untyped one). We expect a CLU implementation to report thatc : charc := 'a'...c := c + 372is not correct when we attempt to compile the program. On the other hand, a Smalltalkimplementation presented withj c jc 'a'...c c + 372is unable to report at compile time that the + operator will fail. Such errors in Smalltalkcan be detected only at run-time.Even in those cases where type checking is not completely done at compile time, atype system allows run-time messages to more closely pinpoint the cause of the trouble.

28In Smalltalk, a language without declared types, type errors committed by the programmereventually get caught as \Message not understood" errors when an attempt is made toinvoke an unimplemented operation on an object. Usually, the root of the problem is notthat the object should have the operation de�ned for it, but rather the object is not ofthe expected type at all.Another bene�t claimed for programming language type systems is increased perfor-mance. In most cases, compile time type checks permit more e�cient storage allocationand the complete elimination of run-time type checking. In addition, in many cases compiletime type information allows us to generate more e�cient code. Consider the implementa-tion of the + operator in Smalltalk and CLU. In both of these languages, + is overloaded.That is, it can be applied to operands of a number of di�erent types. In Smalltalk, due tothe lack of type information in the program text, the implementation of the + operatormust determine the types of its arguments at run-time and act accordingly. In CLU,the types of the arguments can be determined statically by the translator, enabling thetranslator to select the appropriate operator and compile in-line code for the + operation.In a large number of programming languages, the type system is used to convey in-formation about the implementation of the thing described. Thus the de�nition of atree-node typetype Node = recordvar data : Integervar left, right : "Nodeend recordtypically de�nes an implementation as much as it provides a description of the propertiespossessed by values of the type.This close coupling of implementation with description is also apparent in the de�nitionof the compatibility rules between types in these languages. Consider the packed and non-packed variants of records in Pascal.

29type t1 = packed recordvar a : charvar b : integervar c : charend recordtype t2 = recordvar a : charvar b : integervar c : charend recordThese two types are not compatible, even though there is no di�erence in the operationsthat can be performed on them. The non-compatibility stems from the fact that the twotypes are expected to be implemented di�erently. Even in a language such as CLU inwhich the user can de�ne his own data types, two clusters that de�ne data types with thesame operations but di�erent implementations are not compatible.A �nal purpose that types typically serve in programming languages is the creation ofnew entities. In fact, in most programming languages there is no way to cause the creationof an object without �rst creating its type. Examples of this are creators in CLU clustersand set creators in Concurrent Euclid.3.3 What should types do?We have seen that programming language types serve (at least) six purposes:1. representation independence2. early error detection3. more meaningful error reporting

304. improved performance5. de�nition of the implementation of values6. instance creationInterestingly, only those purposes having to do with error checking and reporting areat all related to the reason that type systems were invented in the �rst place: to assist usin classifying the objects that we manipulate. To provide such assistance, types shouldconcern themselves with the attributes of the objects that they represent. De�ning theinterface to objects is clearly the role of types. For example, when you know that someentity has type Directory, you know that it implements operations Add, Lookup, andDelete with particular arguments and results.Emerald separates the other purposes that types serve in programming languages fromtheir role in classifying objects. The major purpose traditionally served by types, ensuringrepresentation independence, is served in Emerald by objects themselves. In object-basedlanguages, only an object may have access to its own representation. An attempt tomanipulate an object in an unintended manner results in an illegal invocation of someunimplemented operation. In Smalltalk, for example, it is impossible to apply a oating-point addition operation to integer values because those integer objects only implementthe integer addition operation. The object model ensures representation independence,thereby freeing the type system from this responsibility. The remainder of this chap-ter discusses the development of the Emerald type system, which addresses the issue ofde�ning object interfaces and explains how Emerald provides more support for classifyingobjects than traditional type systems. Chapter 4 discusses the other roles typically playedby types: de�ning object implementations and object creation. Chapter 6 discusses theimplementation issue of improved performance.

313.4 Requirements for Emerald's type systemTo be useful for the construction of distributed, system-level applications, Emerald mustprovide:� a single model of objects appropriate for objects at all levels of the system� distribution� system-level application support, which involves the addition of newly de�ned andcreated entities to existing systems� an e�cient implementationSeveral of these requirements placed constraints on the type system of Emerald.First, the type system can only be concerned with the abstract nature of the entitiesbeing described. This is true for two reasons.1. To support the addition of newly de�ned objects to an executing system, the typesystem must not distinguish between two objects based on their implementations.To see this more clearly, consider the problem of adding a new kind of �le to anexisting �le system. All the existing programs that manipulated �les must be ableto manipulate these new �les, assuming only that this new implementation of the �letype meets the speci�cation of that type. It is clear from our Eden experience thatthis kind of exibility in the type system is important for the kind of applicationsthat we want to support. For old code to invoke newly created objects it must bepossible to have these new objects implement existing types, i.e., the new objectmust be able to conform to the old type.2. We mentioned previously that the Emerald compiler chooses an implementation foreach object based on the attributes of the object and the way that it is used. Thesemultiple compiler-generated implementations from the same source code clearly must

32all have the same type. Therefore, that type must be concerned only with theinterface to the object, not its implementation.Second, our desire for e�ciency requires us to do as much type checking as possible atcompile type.Third, we require the ability to delay type checking until run-time. It must be possiblefor a reference to an object to be both widened and narrowed in type at run-time. Again,this requirement is a result of our application domain. System-level applications oftenwish to delay type checking until run-time. An example is the implementation and use ofa hierarchic directory system. We wish to be able to put objects into the directory systemwithout regard to their types, and then later retrieve them and ensure that they are of theproper type for later processing. This implies that type information about objects mustbe available for run-time inspection.Fourth, the type system must support polymorphism. Typically, programming lan-guages allow operations to be parameterized by data values, but not by types. That is, aprocedure that creates a stack in Pascal may be parameterized by an integer representingthe maximum size that the stack may grow, but not by the type of the elements thatwill be pushed onto the stack. Polymorphic languages allow constructs to be parameter-ized with types. We wish to retain the exibility of dynamically typed languages such asSmalltalk and EPL (in which capabilities are dynamically typed) within the frameworkof a statically typed language. These languages have the ability to abstract the qualitiesof a stack object away from the qualities of the objects that are to be pushed onto it. Weneed to provide similar expressive power.To meet this set of requirements, the Emerald type system has the following majorfeatures:� Types de�ne the interface to objects, but provide no implementation information.� Types are themselves objects. Therefore, types exist at run-time allowing run-time

33type checking to be performed. In addition, passing types as parameters to supportpolymorphism is simpli�ed.� All identi�ers are typed statically, and all assignments and operation invocations aretype checked at compile time.� To implement polymorphism, the type system concerns itself not only with the typesof types that are passed as parameters, but also with their values.We will discuss each of these attributes of the type system in the following sections.3.5 Abstract typesThe Emerald type system must allow two objects with di�ering implementations to havethe same type. These two implementations may either be user-de�ned (a new kind of �leadded to the �le system) or compiler-produced (two representations generated from thesame source code).A number of existing languages including Alphard [WLS76], Modula [Wir77], Euclid[LHL+77], CLU [LSAS77, LAB+79], Gypsy [GCKW79], and Ada [Ada83] claim to supportabstract data types. In these languages, however, each object has exactly one type. Thistight binding of types to objects is too restrictive for our applications. Our type systemmust allow the construction of types, instances of which can be used without knowledgeof their internal representation.We de�ne an abstract type to be a collection of operation signatures, where an operationsignature includes the name of the operation, and the names and types of its argumentsand results.3.5.1 Informal de�nition of Emerald's type systemIn Emerald, all identi�ers are typed abstractly, i.e., the programmer declares the abstracttype of the objects that an identi�er may name. Such a declaration captures his knowledge

34of the set of invocations to which those objects should respond. The only exception tothis rule is that the type of constants may be omitted. If omitted, the type is inferred bythe compiler.The notion of type conformity is central to Emerald. The legality of an assignmentis based on the conformity of the type of the assigned expression and the abstract typedeclared by the programmer for the identi�er. This conformity will always be checked atcompile time. Conformity was introduced in Section 2.2. Roughly, a type P conforms toanother type Q if P provides at least the operations of Q. (P may also provide additionaloperations.) Moreover, the types of the results of P 's operations must conform to the typesof the results of the corresponding operations of Q. Finally, the types of the arguments ofthe corresponding operations must conform in the opposite direction, i.e., the argumentsof Q 's operations must conform to those of P 's operations.To illustrate the need for the parameter matching rules, consider the following exam-ples. Any is the abstract type containing no operations, thus every type conforms toit. type AnyPusheroperation Push[Any]end AnyPushertype IntegerPusheroperation Push[Integer]end IntegerPusherThese rather useless types de�ne \bottomless pits" into which integers and arbitrary ob-jects can be pushed. Intuitively, one would expect AnyPusher to conform to IntegerPusher,because an implementation of AnyPusher can be used wherever an IntegerPusher is re-quired. The rules bear this out; the two types are identical except for the argument typesof Push, and these conform in the opposite direction, i.e., Integer conforms to Any. Nowconsider:type AnyPopperoperation Pop ! [Any]end AnyPopper

35type IntegerPopperoperation Pop ! [Integer]end IntegerPopperHere IntegerPopper conforms to AnyPopper, because the results of Pop conform in thesame direction. Finally, observe that:type AnyStackoperation Pop ! [Any]operation Push[Any]end AnyStacktype IntegerStackoperation Pop ! [Integer]operation Push[Integer]end IntegerStackare incomparable; they do not conform in either direction. The reason for this should beobvious; users of an IntegerStack object expect its Pop operation to return an Integer, soan AnyStack clearly won't do. Users of an AnyStack expect to apply its Push operationto arbitrary objects; the Push of IntegerStack can be applied only to an Integer.Note that Emerald's notion of type conformity di�ers from inheritance in Smalltalk.In Smalltalk, a subclass does not necessarily conform to its superclass; for example, it mayoverride some of the operations of the superclass so that they expect di�erent classes ofargument. Moreover, one class may conform to another without a subclass relationshipexisting between them. What a subclass and its superclass do have in common is partof their representation and some of their methods. In short, inheritance is a relationshipbetween implementations, while conformity is a relationship between interfaces.3.5.2 Formal de�nition of Emerald's type systemThe above explanation of conformity in Emerald was not well-founded; the conformity oftwo types depended on the conformity of the types of the arguments and results of theoperations de�ned by the types. This section will present a formal de�nition of Emerald'stype system including conformity, as well as an algorithm for checking conformity.

36Let F , I, T be disjoint sets, F being the set of operation names, I being the set ofidenti�er names, and T being the set of type names. Further, let AbstractType 2 T , anjand rnk 2 I, and let aj and rk 2 T [I. A signature, s, is either:� the distinguished null signature �, of unde�ned arity, or� a pair <functional, parameters> where:{ functional(s) is a Boolean value{ parameters(s) is an expression of the form<an1, a1>� � � � �<ann, an>! <rn1, r1>� � � � �<rnm, rm>with the following two restrictions which ensure that identi�ers used as typesare bound by some previous argument in the same signature:1. if some aj 2 I then9l s.t. l < j and anl = aj and al = AbstractType2. if some rk 2 I then9l s.t. anl = rk and al = AbstractTypeS then has arity <n, m>.For the moment we will not be considering the argument and result names anj and rnk.They are included in preparation for the discussion on polymorphism in Section 3.8.3.Let S be the set of all signatures. A type declaration of t 2 T is a pair<immutable, operations> where:� immutable(t) is a Boolean value, and� operations(t) is a total function from F to S.Obviously, in actually declaring the operations of a type, one need only specify the opera-tions which have non-null signatures. For example, the type IntegerStack of the previoussection can de�ned as:

37immutable(IntegerStack) � falseoperations(IntegerStack)(x) � 8><>: <false, Integer !> if x = push<false, ! Integer> if x = pop� otherwiseSuppose T is a binary relation on T , i.e., T � T � T . Intuitively, T is a set ofpairs which we hope are true assertions about conformity, i.e., <t, u> 2 T) t conformsto u. We haven't de�ned conformity yet, however, so the intuition can't be formalized.Now suppose that s; s0 are elements of S. Then T induces a relation S on S as follows.<s, s0> 2 S if either s0 = � or all three of the following hold:1. functional(s0)) functional(s)2. arity(s) = arity(s0)3. writingparameters(s) = <an1, a1>� � � � �<an1, an>! <rn1, r1>� � � � �<rnm, rm>parameters(s0) = <an01, a01>� � � � �<an0n, a0n>! <rn01, r01>� � � � �<rn0m, r0m>we have <a0j, aj> 2 T ; for j = 1; 2; : : : ; n, and<rk, r0k> 2 T ; for k = 1; 2; : : : ;m.Informally, corresponding pairs of results must be in T and corresponding pairs of argu-ments must be in T �1. To illustrate this, consider the Pop operations on the IntegerPopperand AnyPopper types from the previous section. We have:s = <false, ! Integer>s0 = <false, ! Any>For <s, s0> to be in S:

381. false) false2. <0, 1> = <0, 1>3. <Integer, Any> 2 T .All three of these conditions are true (we will see later how to show that <Integer, Any>2 T), and therefore <s, s0> is in S.Now, what is to distinguish an arbitrary T from our desired conformity relation?Exactly the requirements that the immutabilities match and that the corresponding pairsof signatures are in S. Formally, we say that T is valid if, for all type names t and u, andall operation names f 2 F , <t, u> 2 T implies both the following conditions:1. immutable(u)) immutable(t)2. <operations(t)(f), operations(u)(f)> 2 SWe may now de�ne conformity. A type t conforms to a type u if there exists somevalid relation containing <t, u>. We write t conforms to u as t �> u.Lemma:The union of two valid relations is valid.Proof:Follows immediately from the de�nitions.Since valid relations are closed under union, we may safely combine separate systemsof declarations. If two systems of declarations are separately valid, then their union is alsovalid.Now we can de�ne a decision procedure which will check whethert �> uis true. Starting with T = f <t, u> g, we will build two relations T and S recursively. Twill be a valid relation on T , and S will be the relation on S induced by T . Whenever we

39insert <a, b> into T , we must also insert <operations(a)(f), operations(b)(f)> into S forall f such that operations(a)(f) 6= �. This ensures that T remains valid. Additionally,whenever we insert<s, s0> into S, we insert all the appropriate <a0j, aj>'s and <rk, r0k>'sinto T so that S is indeed the derived relation for T . We fail in attempting to insert a pair<t, u> into T if and only if immutable(u) 6) immutable(t). We fail in attempting to inserta pair <s1, s2> into S if and only if the arities of s1 and s2 mismatch, or functional(s2)6) functional(s1), or s1 = � when s2 6= �. If we succeed, we will have constructed a validrelation containing <t, u>, thereby proving that t �> u. In fact, we will have constructedthe smallest relation containing <t, u>. On the other hand, we only inserted necessaryelements into the relations T and S, so if the procedure fails, then t does not conform tou. Let us apply this decision procedure to check the conformity of IntegerStack and AnyS-tack. To insert <IntegerStack, AnyStack> into T , immutable(AnyStack) must imply im-mutable(IntegerStack) (which they do since both are false), and in addition we must insertinto S the following two pairs of signatures:<operations(IntegerStack)(Pop), operations(AnyStack)(Pop)><operations(IntegerStack)(Push), operations(AnyStack)(Push)>Looking at the de�nition of IntegerStack and AnyStack, these pairs of signatures are:<<false, ! Integer>, <false, ! Any>><<false, Integer!>, <false, Any!>>The arities and functional components of these two pairs of signatures correspond, there-fore we must only insert the pairs <Integer, Any> (from Pop) and <Any, Integer>(from Push) into T . The insertion of <Integer, Any> causes no di�culties.We attempt to insert into S all those pairs of operation signatures for whichoperations(Any)(f) 6= �, but operations(Any)(f) = � for all f 2 F . Note thatthis gives formal justi�cation to our earlier statement that all types conform to

40Any. In attempting to insert the pair <Any, Integer> into T , we must insert<operations(Any)(+), operations(Integer)(+)> (among others) into S. We fail in doingthis since operations(Any)(+) = � where operations(Integer)(+) 6= �. We therefore con-clude that, because of the existence of the Push operation, IntegerStack does not conformto AnyStack. This coincides with our intuitive result in Section 3.5.1.Note that since the union of valid relations is valid, there is no need to start withempty relations T and S; any valid relation T on types and its induced relation S onsignatures may be used as a starting point. In actually implementing this procedure, therelations T and S may be retained after conformity checking, thus eliminating the needto compute them again.3.5.3 Types form a latticeOur de�nition of conformity implies that T , the set of types is a partial order under �>.This information was graphically depicted in Figure 2.1. The de�nition of �> makes itsimple to conclude that T has a least element: the non-immutable type with no operations.This type is the bottom of the partial order, and is called Any since every type (andtherefore every object) conforms to it.For T to be a lattice, the join (t or least upper bound) and meet (u or greatestlower bound) between each pair of elements must exist. Since T is a partial order witha least element (? or the type Any), all the meets exist. For the joins to exist, it mustbe possible to de�ne a type that conforms to any two arbitrary types. As Emerald's typesystem has been de�ned so far, it does not allow this construction for two arbitrary types.In particular, if both types de�ne the same operation, but the arity of the signatures isdi�erent, it is not possible to de�ne a type that conforms to both. As an example, a typethat conforms to both:

41type T1operation o[Any]end T1type T2operation o[Any, Any]end T2must de�ne an operation o that takes both one and two arguments, clearly an impossibletask. We may make T into a lattice by the addition of a single additional element >. Incontrast to ?, which is de�nable in Emerald as the type Any:type Any% no operationsend Any> is not de�nable in Emerald, since it must implement every operation with every possiblecombination of argument and result types. It must therefore be explicitly added to theset of types, and the de�nition of conformity given above must be modi�ed to state that<>, u> 2 T for all u in T . > is the prede�ned Emerald type None, so named becauseno object (other than the object nil, to which all variables are initialized) can implementit. We may look at the type lattice in terms of information content. A type t conformsto a type u if t provides more information (about the objects that conform to it) thandoes u. ? contains no information, thus every type conforms to it. > contains too muchinformation (in fact, contradictory information) thus no other type can conform to it.3.5.4 DiscussionThe reader may notice that our de�nition of type conformity relies heavily on the nameschosen for operations. There are two disadvantages to this:1. Two types may not conform when they \really" should if the operation names are notidentical. Suppose that someone de�nes an object that is directory-like except thatinstead of using the name Add for the operation that adds something to a directoryshe chose the name Insert. Our emphasis on the operation names in conformitychecking causes this new type to not conform to Directory.

422. Two types may accidentally conform because they have operations with the samenames and parameter types, even though the semantics of the operations are verydi�erent.These two problems could be resolved by considering the semantics of the operations inaddition to their signatures. We have not yet pursued this idea, but discuss it as an avenuefor further research in Section 8.2.3.6 Types are objectsIn most languages, types are not �rst-class values. It is illegal to pass a type as a parameteror to invoke operations on types. The programming language Russell [DD79, DD85] wasan experiment in making types �rst-class values. Types could be passed as parametersto functions, computed and returned from functions and assigned to variables. Abstracttypes in Emerald are likewise �rst-class citizens.Abstract type objects obey a particular invocation protocol: they export a function(without arguments) called getSignature that returns a Signature object. Signature isa pre-de�ned abstract type. In other words, an abstract type is an object that conformsto the following abstract type:immutable type AbstractTypefunction getSignature ! [Signature]end AbstractTypeTypically, abstract types are created using type constructors. An example of a type con-structor is:type Directoryoperation Add [name : String, thing : Any]operation Lookup[name : String] ! [thing : Any]operation Delete[name : String]end DirectoryThis constructor is executable, and when executed causes the creation of an objectthat conforms to AbstractType. The execution of the getSignature operation on the

43resulting object returns another object: an abstract type with three operations: Add,Lookup, and Delete. Type constructors are, however, not the only mechanism for creatingabstract types. This is discussed further in Section 4.2.3.7 Static typingTo perform static type checking the compiler must be able to determine the type of everyidenti�er and the result type of every expression. On the other hand, arbitrary objectscan be abstract types as discussed above. Syntactically, therefore, types are arbitraryexpressions. For example, a variable declaration (without initialization) has the form:`var' <identi�er> `:' <expression>Since assigning a type to the identi�er declared in this way requires knowledge of thevalue of the expression, the compiler must evaluate all expressions appearing in typepositions. Expressions that may be evaluated by the compiler are called manifest. Typeconstructors are manifest if all expressions appearing in type positions within them aremanifest. Invocations of operations on objects are manifest only if all four of the followingconditions are true:1. the target is immutable2. the operation is a function3. all the arguments are manifest4. the body of the operation is su�ciently simpleThe �rst three conditions guarantee that the answer is independent of when the invocationis performed. This allows us to execute it early | at compile time. The �nal condition freesthe compiler from performing arbitrary computations at compile time to evaluate manifestexpressions. Currently, because the compiler is not part of the Emerald environment, onlyoperation bodies that consist of the return of a manifest value are considered manifest.

44While all assignments and invocations are type checked statically, Emerald incorpo-rates a mechanism for performing run-time type checks. This mechanism is the viewexpression, which changes the abstract type through which an object is viewed. It has theform:̀view' <expression> `as' <typeExpression>The abstract type of the expression is the type given by typeExpression (which must bemanifest). A run-time check is generated by the compiler if it cannot determine staticallythat the expression is guaranteed to conform to the type. The view expression is the onlymethod for widening the type of a reference, and only where view expressions are used arerun-time type checks performed. View expressions that narrow the type of a reference areredundant because conformity implies implicit narrowing. A redundant view expressiongenerates no run-time check.3.8 PolymorphismIn attempting to de�ne an Emerald type system that incorporates polymorphism, we wentthrough two stages.3.8.1 A �rst tryOur �rst attempt at incorporating polymorphism into Emerald naively assumed that con-formity and the fact that types are objects would be enough. That is, we expected that wecould de�ne a polymorphic stack as in Figure 3.1. The where clause provides a convenientplace to introduce new constants; stackType is declared as a constant with the indicatedvalue (an abstract type). We may then use Stack as:const stackOfInteger == Stack.of [Integer]For this example, everything is �ne. Integer conforms to AbstractType, thereforeStack.of [Integer]

45

const Stack == immutable object aStackCreatorexport offunction of [eType : AbstractType] ! [result : stackType]wherestackType == type stackTypeoperation Push[eType]operation Pop ! [eType]function Top ! [eType]function Empty ! [Boolean]end stackTypeend whereresult object aStack% representation declarationsoperation Push[anElement : eType]...end Push...end aStackend ofend aStackCreator Figure 3.1: A polymorphic stack

46is type correct. Con�dently, we then proceed to de�ne a more interesting polymorphicobject: a sorted collection. This object is supposed to maintain a list of objects so thatthey may be traversed in increasing order. Figure 3.2 contains our �rst attempt. Theconst Sortable == immutable type Sortablefunction <[Sortable] ! [Boolean]end Sortableconst SortedCollection == immutable object aSortedCollectionCreatorexport offunction of [eType : AbstractType] ! [result : collectionType]wherecollectionType == type collectionTypeoperation Add [eType]operation getElement [Integer] ! [eType]function Size ! [Integer]end collectionTypeeType �> Sortableend whereresult object aCollection% representation declarationsoperation Add [anElement : eType]...end Add...end aCollectionend ofend aStackCreator Figure 3.2: A polymorphic sorted collectionexpression:eType �> Sortablein the where clause indicates that we wish the actual argument to the of operation to bean abstract type that conforms to Sortable. That is, it must be immutable and have a <function that orders its values. We use this object as:const IntegerCollection == SortedCollection.of [Integer]In type checking this expression, we check whether the type of Integer conforms toAbstractType, which it does since Integer is an abstract type (exports the required

47getSignature function). Then, because of the where clause, we need to check the valueof Integer against the value of Sortable. Unfortunately, Integer does not conform toSortable. For Integer to conform to Sortable, the arguments of the < operation mustconform in the opposite direction; i.e., Sortable must conform to Integer. Since Integerhas (among others) the operation + which Sortable does not have, Sortable does notconform to Integer, and therefore Integer does not conform to Sortable.We therefore conclude that our de�nition of conforms must be incorrect, since integersshould be perfect candidates for insertion into sorted collections. After a number ofunsuccessful attempts at de�ning conformity so that Integer will conform to Sortable,we next try to prove that it cannot be done. This turns out to be very simple. IfInteger conformed to Sortable, then Character should also conform to Sortable, sincethe < operation on characters has the same signature as that on integers (except for thechanged type name). We may then write the following program fragment:var s1, s2 : Sortables1 1000000s2 'a'assert s1 < s2Assuming that both Integer and Character conform to Sortable, the type system has nochoice but to conclude that this program fragment is type correct. Integer conforms toSortable so the assignment to s1 is type correct (through an implicit narrowing). A similarargument implies that the assignment to s2 is type correct. The comparison in the assertstatement is of two Sortables, and so is type correct. Unfortunately, that comparisonmakes no sense. There are two < operations that we could attempt to use: the one onintegers or the one on characters. Neither of these however is able to compare charactersto integers. We therefore need to make this program illegal, so we conclude that it is notpossible to allow Integer to conform to Sortable.

483.8.2 A second tryAfter our �rst attempt to support polymorphismwith just conformity and types as objects,we concluded that conformity by itself was not enough. What we needed was a way tomake Integer conform to Sortable, but only sometimes. Such a mechanism exists in theform of type variables [CW85, Car86]. A type variable is very much like a type, except thatthe rules for conformity checking are modi�ed slightly. In particular, when attempting toconform a type t to a type variable T one �rst identi�es the local names for the types,and then performs the normal conformity checking. With this de�nition of conformitybetween types and type variables, and de�ning constrained formal parameters to be typevariables rather than type constants, we may implement polymorphism.Looking again at the de�nition of SortedCollection in Figure 3.2, no syntactic changesare required to make it correct. The constrainteType �> Sortablein the where clause causes eType to become a type variable. When we executeSortableCollection.of [Integer]we must check that the type constant Integer conforms to the type variable eType. Firstwe make their local names the same by substituting Integer for Sortable throughout thede�nition of Sortable. We are then checking whether Integer:const Integer == immutable type Integerfunction +[Integer] ! [Integer]...function <[Integer] ! [Boolean]end Integerconforms to the modi�ed de�nition of eType:const eType == immutable type Integerfunction <[Integer] ! [Boolean]end Integerwhich it clearly does.

493.8.3 Formal de�nition of polymorphismTo include polymorphism in our formal de�nition of Emerald's type system, we need tomake the following additions. The basic de�nitions and conformity checking algorithmremain the same. Previously, all assignments were checked using the conformity algo-rithm including the implicit assignments of arguments to formal parameters in operationinvocations. To handle polymorphism, we need a new rule for type checking operationinvocations.First we need to introduce some syntax to handle the substitution of names necessaryto deal with type variables. Let t, ui, and vi be type names. We de�ne t[u1=v1; : : : ; un=vn]to be the type formed by substituting in t the name ui for each free occurrence of thename vi. For example, with the de�nitions of Integer and Sortable as previously given,Sortable[Integer=Sortable]is the type:immutable type Integerfunction <[Integer] ! [Boolean]end IntegerWe now present the type checking rule for operation invocation. An operation invocationhas the form: e:o[e1; : : : ; en]Let the type of e be t, and the types of ei be ti for i = 1; 2; : : : ; n. This invocation is typecorrect if and only if:1. operations(t)(o) 6= �, and2. writing operations(t)(o) as:<an1, a1>� � � � �<an1, an>! <rn1, r1>� � � � �<rnm, rm>then for all i = 1; : : : ; n:

50(a) ti �> ai, and(b) if ai = AbstractType then ei �> ani[ei=ani] .3.9 ComparisonWe can compare Emerald's type system with that in a number of existing and proposedlanguages. The languages Russell [DD79] and the typed �-calculus of Cardelli [Car86] bothtreat types as �rst class citizens as we do. First-class types allow the simple expression ofpolymorphism using the parameterization scheme already in the languages. In additionto �rst-class types, Cardelli's language de�nes Type (the type of all types) as a type itself,just as our notion of AbstractType (the type of all types is also a type). However,because these languages are value-based rather than object-based their type systems havethe additional burden of providing the representation independence that we discussed inSection 3.2. Therefore the type of an identi�er determines not only the abstraction, butalso the implementation, of the values that may be assigned to it.Our type system is perhaps closest to that of Owl [SCW85]. The Owl type systemalso concentrates on the speci�cation of objects rather than their implementation, andits de�nition of subclass compatibility is very similar to Emerald's notion of conformity.However, types in Owl are not objects, and Type is not a type. This forced the designersto use a second parameterization mechanism for the creation of polymorphic types.3.10 SummaryThe purpose of Emerald's type system is to assist the programmer in classifying the objectsused in an application. Other purposes traditionally served by a programming languagetype system are addressed by other features of Emerald. In addition, Emerald's typesystem is constrained by the intended application domain of the language in three areas:1. All type checking, except where explicitly requested by the user is to be done atcompile time.

512. It must be possible to delay type checking until run-time by explicit programmerrequest.3. Polymorphism is supported. Types may be passed to operations, returned as theresults of operations, and manipulated in arbitrary ways at run-time subject only tothe constraint that all expressions in type positions must be manifest.Since Emerald types are concerned only with the speci�cation and not the implementationof objects, Emerald's type system better supports the programmer's classi�cation of hisobjects; Objects that may serve the same purpose may have the same type independent oftheir implementation. Emerald's type system serves only to help the programmer classifythe objects used in an application, and detect errors of incorrect object usage. Otherpurposes traditionally served by programming language types | object de�nition andcreation | are discussed in the next chapter.

Chapter 4Objects
Emerald is designed around a single uniform model of object. This chapter discussesthat model, and the rather unique mechanism used in Emerald for object de�nition andcreation.4.1 Object de�nition and creationIn Chapter 3 we discussed one of the roles that types serve in existing programminglanguages: the speci�cation of the interface to objects. We emphasized that the Emeraldtype system is not concerned with the implementation of the objects whose interfaces itdescribes. We now discuss the Emerald mechanism for de�ning and creating objects.4.1.1 A bit of historyObject-based programming languages and systems have traditionally been based on theconcept of a class or type object. In Simula, each object is an instance of a class. Tocreate an object, the programmer �rst de�nes the class, which is a template for objectconstruction, and then uses a primitive language construct, the new expression, to createan instance of the template. This same idea is found in Smalltalk. The behavior of indi-vidual objects is de�ned by their class; changes to the state of the class a�ect the behaviorof the instance. Similarly, CLU objects are created by invoking creation operations onclusters, which de�ne the behavior of all their instances. On the operating system side,

53Hydra, StarOS, and Eden all require the creation of a type object which de�nes thebehavior of its instances before any instances can be created.Class based mechanisms for object de�nition are based on the idea of collecting thecommon features of objects and de�ning them in one place. There are two places whereobject attributes can be de�ned: in the class, where they are shared among all the in-stances, or in the instances where they are private. To take a concrete example, considerde�ning geometric points in 2-space. All points require operations to move themselvesand calculate their distances from other points. In addition, every point performs theseoperations in the same manner. De�nitions of these operations can be reasonably placedin the class. On the other hand, the location of each point may be di�erent, so thatinformation should be contained in the instances.This class-based approach to the de�nition of objects has become so prevalent thatoften it seems to be the only mechanism available. However, this is not the case.In Sketchpad [Sut63] objects are created by incrementally de�ning their componentsand attributes. Alternately, objects may be created by copying existing objects. Thesecopied objects may then be specialized as necessary. The SW-2 system [LH85] also de�nesand creates objects without reference to classes, although they do use the term class indescribing how operations on objects may be shared (or inherited). Rather than concen-trating on classes, these languages concentrate on the objects themselves.In de�ning a distributed programming language, we had a number of concerns aboutusing classes to de�ne and cause the creation of objects:1. The operations on classes that create new objects typically have access to the \classvariables". To implement this in a distributed environment implied that either objectcreation could only be done on the machine where the class object resided, or thatthe class object must be replicated. Neither alternative appealed to us.2. The behavior of an object is determined not by the behavior of its class, but ratherby the data of its class; this data is subject to alteration. For example, in Smalltalk,

54the + operation on small integers is typically de�ned to be the + operation de�nedby the hardware. However, this is not guaranteed. It is possible (in fact, easy)to rede�ne the behavior of the + operation on all the small integers in the systemby modifying the data in the Integer class object. This possibility has three majordrawbacks in a distributed system.First, it is not possible to discover anything about the way that objects are used bystatic analysis. This is because the operations of the object itself, and the objectsthat use it, may be modi�ed dynamically. This implies that all binding of operationnames to code must be done dynamically, or at least that any static binding mustbe able to be re-bound when the class data changes. This has serious performanceimplications, particularly in a distributed environment.Second, as a distributed programming language, Emerald is intended to be used bymultiple users simultaneously. The security aspects of any of these users rede�n-ing addition on all the integers in the system, including those of other users, arefrightening.Finally, Emerald is intended for the construction of distributed applications, notfor their rapid-prototyping. The ability to quickly rede�ne the behavior of existingobjects is not so important in this environment. In fact, since the construction ofdistributed applications is more di�cult than sequential ones, the language shouldprovide help to increase con�dence that a given solution is correct. Once con�dencein the correctness of a particular object has been obtained, the language should notallow modi�cations to it that may introduce errors.4.1.2 Object constructorsFor the reasons outlined in the previous section, the de�nition and creation of Emeraldobjects is not based on the class notion. Rather, the de�nition and creation of an objectin Emerald is done with the object constructor introduced in Chapter 2. An object con-

55structor de�nes the representation and operations of a single object as well as the activebehavior of the object. When executed, an object constructor causes the creation of asingle object.What do we lose?Object constructors lose some of the exibility that class-based object creation provides.In particular, once an object has been created it is not possible to modify its behavior.This is not simply a restriction that we have placed on object construction, but is inherentin the use of object constructors, or more correctly, in the abandonment of classes. Sinceobjects do not rely on any other \class" object for the de�nition of their behaviour, thereis no way to discuss the notion of changing the \class", thereby a�ecting the behaviour ofthe \instances". As argued above, this exibility is not so important | in fact, not evendesirable | in a distributed environment.What do we gain?Object constructors have a number of advantages over classes. First, object constructorsare cleaner. Figure 4.1 demonstrates the relationships between a directory object, and itsclasses and metaclasses in Smalltalk. To create a single directory, its class must �rst becreated and initialized appropriately. Since Directory Class is also an object, it must alsohave a class. This is Directory Metaclass, which is an instance of Metaclass itself. ButMetaclass is also an object, and therefore must have a class. At this point the Smalltalkhierarchy loops; Metaclass is its own class. In addition, the Directory Class object isthe only instance of its class. Directory Metaclass exists solely to contain the de�nitionof Directory Class. In contrast, Figure 4.2 shows what is necessary when we use objectconstructors to de�ne a directory creator and one \instance". This simpli�cation resultsfrom the ease in which 1-of objects may be de�ned in Emerald. The directory creatorobject requires no class object for its existence. In fact, there isn't even a class/instancerelationship between the directory creator and the created directory object.

56
Directory

MetaClass

Directory
Class

MetaClass

Directory
Instance

1-of

1-of

1-of

Figure 4.1: Smalltalk instance/class/metaclass structureSecond, object constructors may be nested. Traditional class/instance structures maybe simulated by using a two-level nesting of object constructors. Section 2.3 illustratesthe de�nition of a directory creator object that creates new directories in response toinvocation of its Empty operation.Object constructors are not limited to two-level nesting; they may be nested to asmany levels as the programmer requires. In conjunction with the ability to pass abstracttypes as parameters, this leads to a uniform syntax for the construction of polymorphicobject creators. For example, consider the built-in object Array. Array exports an ofoperation that expects an abstract type argument, as in:Array.of [Integer]The result of this invocation is an object that exports an operation Create of zero argu-ments. When Create is invoked, as inArray.of [Integer].Create

57
Directory

Object

Directory
Creator

1-of

Figure 4.2: Emerald object/creator structurethe result is an array object, i.e., an object that exports operations like setElement, getEle-ment, lowerbound, and upperbound.In a similar way, one could extend the oneEntryDirectoryCreator of Figure 2.3 on page21 to de�ne a typed oneEntryDirectory creator creator that is parameterized by the typeof the directory entry as shown in Figure 4.3.As a �nal advantage, once an object is created, it may not have its behavior modi�ed.This guarantees the integrity of individual objects. Once con�dence has been obtainedin an object de�nition and objects have been created, it is not possible to modify theseobjects. In addition, it is possible to analyze object constructors statically to perform op-timizations based on their attributes and the manner in which they manipulate componentobjects. This important performance optimization is discussed in Chapter 6.4.2 Objects as typesIn Section 3.6, we introduced type constructors as one method for constructing abstracttypes. Abstract types are not limited to objects created using type constructors. Abstracttypes include any objects conforming to the following type:immutable type AbstractTypefunction getSignature ! [Signature]end AbstractType

58const myTypedDirectoryCreatorCreator == immutable object typedDCreatorCreatorexport offunction of [ElementType : AbstractType] ! [result : DirectoryCreatorType]whereTypedDirectory == type TypedDirectoryoperation Add [String, ElementType]operation Lookup[String] ! [ElementType]function Delete[String]end TypedDirectoryDirectoryCreatorType == type Toperation Empty ! [result : TypedDirectory]end Tend whereresult object typedDirectoryCreatorexport emptyoperation Empty ! [result : TypedDirectory]result object oneEntryDirectory...end oneEntryDirectoryend Emptyend typedDirectoryCreatorend ofend typedDCreatorCreatorFigure 4.3: A typed directory creator creatorFor example, if we add the following function de�nition to Figure 2.3,function getSignature ! [result : Signature]result Directoryend getSignaturewe may use oneEntryDirectoryCreator as an abstract type. We may now writevar aDirectory: myDirectoryCreatoraDirectory myDirectoryCreator.Emptyrather thanvar aDirectory : DirectoryaDirectory myDirectoryCreator.Empty

59Given the dual role of myDirectoryCreator, we see that it may have been appropriate togive it a less descriptive name.A better example may be seen by examining how we may augment the de�nition of ourtypedDirectoryCreatorCreator in Figure 4.3 to take advantage of the ability to use arbitraryobjects as abstract types. Suppose we would like to create a directory into which we mayinsert only MailBoxes. We may do so by declaring:const mailBoxDirectory == myTypedDirectoryCreatorCreator.of [MailBox]Since mailBoxDirectory is a constant we may allow the compiler to infer its type, thussaving us from doing it. But now suppose we actually require a variable that shouldreference mailBoxDirectories. Emerald requires that the type of variables be explicitlyprovided, therefore we are forced to declare the type:const MailBoxDirectoryType == type MailBoxDirectoryTypeoperation Add [String, MailBox]operation Lookup[String] ! [MailBox]function Delete[String]end MailBoxDirectoryTypeThis allows us to declare our variable and use it in the following manner:var mailBoxDirectory : MailBoxDirectoryType...mailBoxDirectory myTypedDirectoryCreatorCreator.of [MailBox].EmptyMailBoxDirectory is exactly the type we would obtain by substituting MailBox for Ele-mentType in the declaration of TypedDirectory in the where clause of the operation of. Infact, in determining the type of the result ofmyTypedDirectoryCreatorCreator.of [MailBox].Emptythe type system must perform exactly that substitution. We may take advantage of thework that the type system performs by adding a getSignature operation to the objectreturned by the of invocation on myTypedDirectoryCreatorCreator. The result of doingthis (and changing the name as suggested above) is shown in Figure 4.4. We may nowdeclare and initialize mailBoxDirectory as follows:

60const TypedDirectory == immutable object TypedDirectoryexport offunction of [ElementType : AbstractType] ! [result : DirectoryCreatorType]whereTypedDirectory == type TypedDirectoryoperation Add [String, ElementType]operation Lookup[String] ! [ElementType]function Delete[String]end TypedDirectoryDirectoryCreatorType == immutable type Tfunction getSignature ! [Signature]operation Empty ! [result : TypedDirectory]end Tend whereresult object typedDirectoryCreatorexport getSignature, Emptyfunction getSignature ! [theType : Signature]theType DirectoryCreatorTypeend getSignatureoperation Empty ! [result : TypedDirectory]result object oneEntryDirectory...end oneEntryDirectoryend Emptyend typedDirectoryCreatorend ofend TypedDirectory Figure 4.4: TypedDirectory with getSignaturevar mailBoxDirectory : TypedDirectory.of [MailBox]...mailBoxDirectory TypedDirectory.of [MailBox].EmptyWe previously stated that the abstract type of every identi�er in Emerald must be man-ifest. The expression TypedDirectory.of [MailBox] is manifest since the target (TypedDi-rectory) is immutable, the operation (of) is a function, the argument (MailBox) is im-mutable, and the body of the operation is su�ciently simple. The expression can thereforebe evaluated by the compiler.Similarly, the primitive object Array has been de�ned in such a manner that the

61object returned by the of operation may be used as an abstract type. This allows us towritevar a: Array.of [Integer]a Array.of [Integer].create

Chapter 5Other Features of Emerald
There are several other areas of the Emerald design in which either our single objectmodel or our distributed target environment or both have a�ected our design choices.This chapter examines these features of Emerald in an e�ort to more fully understand theimpact that supporting a single object model in a distributed environment has on otheraspects of the language design.5.1 Location dependent operationsEmerald is designed for the construction of distributed applications. As previously stated,we believe that objects are an excellent way of structuring such programs because theyprovide the units of processing and distribution. This belief has been con�rmed by ourexperience with distributed applications in both Eden [AH84, AH85, ABBW84, Bla85]and Emerald.The tendency of many distributed systems is to hide distribution from the programmer.For example, in Xerox RPC [BN84], remote procedure calls were added to Cedar Mesa. Inso far as it was possible, remote procedure calls were designed to be semantically identicalto local procedure calls. This is obviously a desirable property and is what makes RPC soattractive; programs can be written and debugged on a single node using local proceduresand then easily distributed.

63Emerald supports the same notion with object invocation. All objects are manipulatedthrough invocation, and all invocations are location independent; it is the responsibility ofthe run-time system to locate and transfer control to the target object. Remote invocationachieves the same bene�ts as remote procedure call.Some distributed systems, recognizing the utility of location-independent operationinvocation (or message passing) have proposed that all location dependent decisions shouldbe made by the system [All83]. They attempt to present the programmer with the modelof a centralized system, hiding from him the fact that it is implemented on distributedhardware. In fact, Tanenbaum and van Renesse [TvR85] state:A distributed operating system is one that looks to its users like an ordinarycentralized operating system but runs on multiple, independent central pro-cessing units (CPUs). The key concept here is transparency. In other words,the use of multiple processors should be invisible (transparent) to the user.While it is crucial that invocation be location independent, or that distribution betransparent with respect to invocation, it is not necessary that an object's location beinvisible. Many applications may choose to ignore distribution, but others may wishto bene�t from location dependence. For example, a replication manager may wish todistribute object replicas on di�erent nodes, or two applications may wish to be co-locatedduring periods of high communication. Applications that are concerned with distributionmay wish to discover and modify objects' locations, but they still bene�t from location-independent invocation.We can gain some insight into the proper role of location-independence by lookingagain at virtual memory. A virtual memory system provides referential transparency |access to memory words is independent of their current placement in the physical memoryhierarchy. This is a desirable property. Some virtual memory systems completely hidethe physical memory hierarchy from the user, while others have recognized that thereare times when a programmer can exercise control over it to his advantage. An example

64is the provision for virtual memory control through the vadvise and mmap primitivesin UNIXTM. In fact Mach [Ras86], the latest in a series of virtual memory operatingsystems that includes RIG and Accent, has allowed the user more control over virtualmemory management that any of its predecessors. Of course, referential transparency isnot sacri�ced, and system defaults mean that a programmer not desiring to deal withvirtual memory management is not required to.For these reasons, the Emerald language includes a small number of location primitives.Basic to these primitives are node objects, which are the logical location entities in thesystem, and are abstractions of physical machines. An object can:� Locate an object, i.e., determine on what node it resides.� Move an object to another location.� Fix an object at a particular node, which may involve moving it there �rst.� Un�x an object, i.e., make it movable following a �x.� Re�x an object, i.e., atomically un�x and then move and �x an object in a newplace.In all cases, location is speci�ed through a reference to a target object; the location thusdescribed is the node on which the target currently exists.5.2 Call by moveThe choice of parameter passing semantics is crucial to both remote procedure call and ob-ject invocation. In an object-based system, the obvious choice is call-by-object-reference.Since the value of a variable is a reference to an object, it is that reference (the objectname) that is passed in an invocation. This is the same semantics as in CLU (where it iscalled call by sharing) and Smalltalk. In a distributed system, this presents a potentially

65serious performance problem; any invocation by a remotely invoked object of its parame-ters is likely to cause another remote invocation. For this reason, systems such as Argushave required that parameters to remote calls be passed by value, not by reference [HL82].Because Emerald objects are mobile, it may be possible to avoid many remote ref-erences by moving parameter objects to the site of the callee. Whether or not this isworthwhile depends on the size of the parameter object, the number of active invocations,and the number of invocations to be issued by the called object. We expect that param-eter objects will be moved in two cases. First, based on compile-time information, theEmerald compiler may decide to move an object along with an invocation. For example,small immutable objects may be copied cheaply and are obvious candidates. Second, theprogrammer may decide that an object should be moved based on knowledge about theapplication. To make this possible, Emerald provides a parameter passing mode that wecall call-by-move. A call-by-move parameter is passed by reference, as is any other param-eter, but at the time of the call it is relocated to the destination site. Following the callit may be speci�ed to either return to the point of call or remain on the destination site.Call-by-move is a convenience and a performance optimization. The move could bedone explicitly with the move primitive, but that would require more explicit code andwould not allow packaging of parameter objects in the same message as the invocation.While call-by-move co-locates the parameter with the target object, it increases the costof the call and may cause extra remote references from the call's initiator.One goal of the Emerald design is to provide a framework within which object mobilitymay be studied. The results of our investigations into inexpensive object mobility andcall-by-move are reported in [Jul87].5.3 Reliability and availabilityReliability and availability are two closely related problems that signi�cantly complicatethe construction of distributed applications. Reliability is de�ned to be 1 minus the

66probability of lost data due to hardware or software failures. Availability is de�ned tobe 1 minus the probability that access to a particular piece of data will be denied due tofailures.A number of languages and systems have addressed the issues of reliability and avail-ability in distributed computer systems. These include the language Argus [Lis84] and theoperating system Clouds [All83], each of which provide atomic transactions at the lowestlayer in the system, and the ISIS system [Bir85] which supports replication by means of afamily of broadcast protocols with increasingly strong ordering constraints.Neither reliability nor availability were goals of the Emerald design. Therefore, Emer-ald provides very primitive features to application programmers interested in highly reli-able or available applications.ReliabilityThe checkpoint primitive of Emerald allows a collection of objects on a single ma-chine to atomically save their state. The semantics of checkpoint is similar to that inEden [Bla85]; the primary di�erence is that where in Eden checkpoint was speci�edprocedurally (the programmer explicitly wrote all the interesting data to a check-point �le) in Emerald the data to checkpoint is speci�ed declaratively (with attacheddeclarations). When a node recovers after a failure, all checkpointed objects will berestored by the kernel to the state of their most recent checkpoint. After the stateof all objects has been restored, the recovery code of the objects is executed, whichallows programmer de�ned recovery actions to occur.AvailabilityTwo Emerald features provide primitive support for the construction of availablesoftware systems. First, the status of the nodes that make up the Emerald systemis available through operations on Node objects. This provides information a \repli-cation manager" could use in deciding where replicas should be placed. Second,unavailability handlers provide a mechanism for detecting when invoked objects are

67unavailable due to failures. When an invocation or location dependent operation isattempted on an object that is not available due to a node failure, the invocation isaborted and the unavailable handler of the enclosing block is executed if it exists.While these features are very low level, they form a su�cient basis for the construction ofhigher-level transaction and replication schemes [Pu86].5.4 ProtectionThere are two protection related issues. The �rst is the possibility that some malfunction-ing process or object will corrupt the environment in ways that a�ect properly function-ing objects. Operating systems typically provide protection from corruption of this kindthrough the use of address spaces. In Emerald, rather than adopt this \heavy-weight"solution, we have adopted the Concurrent Pascal philosophy [BH77], which states thatnew program pieces added on top of old ones must not be able to make the latter fail.Even though all Emerald objects on a node share an address-space, the compiler and run-time system provide the initialization and run-time checks necessary to guarantee that noEmerald programmer can corrupt memory.The second issue concerns the protection of resources from unauthorized access. Anumber of object-based operating systems have been capability based [Lev84]. Capabilitiesare a protection scheme that moves the responsibility for protection from the system tothe application programmer. Each object is allowed (even expected) to apply privateinterpretation to a set of rights bits in the capabilities used to access it.In the presence of objects implementing more than one abstraction, which our abstracttype system encourages, the assignment of meaning to the rights in a capability can bedi�cult. The interpretation that an object will make of the rights bits in the capabili-ties used to address it is part of its interface, and therefore must be determined by theabstract type. However, the number of rights bits in each capability is limited, usuallyseverely (Eden capabilities have 16 rights bits). An object attempting to implement two

68abstractions that assign di�erent meanings to the same bit is unable to separate the two.Section 8.2 discusses one extension of the abstract type system to the area of protectionthat we are currently investigating.5.5 ConcurrencyWith the Emerald focus on a single uniform object model, the question arises: whatabout processes? Distributed applications must be able to create multiple threads ofcontrol: how is this to be done? Our solution is the same as that in StarOS, Argus, andEden | processes are contained in objects and cannot be directly referenced. Processescommunicate and synchronize through shared objects.Each object has an optional process which is started after the object is initialized uponits creation. Within a single object, multiple operation invocations can be in progresssimultaneously, and these can execute in parallel with the object's internal process. Tocontrol access to variables shared by di�erent operations, the shared variables and theoperations manipulating them can be de�ned within a monitor [Hoa74, BH79]. Processessynchronize through built-in condition objects. An object's process executes outside ofthe monitor, but can invoke monitored operations should it need access to shared state.5.6 SummaryThe last three chapters have discussed the features of Emerald that make it appropriate forthe construction of distributed applications. These features include its novel type system,the way that objects are constructed, and its distribution, reliability and concurrencyrelated features. The following chapters discuss the other claim that we made for Emerald:that it can be e�ciently implemented in a distributed environment.We discuss the approach that we have taken to providing an e�cient implementationin Chapter 6, and provide performance measurements and discussion in Chapter 7.

Chapter 6The Cost of Abstraction
We stated previously that the major goal of Emerald was to design a distributed program-ming language that incorporates a single, uniform object model and can be implementede�ciently. In attempting to meet this goal, we are forced to address a fundamental trade-o� between abstraction and e�ciency. Traditionally, the cost of a language construct isdirectly related to its expressive power: low-level abstractions can be implemented at lowcost, constructs providing more powerful abstractions have a higher cost.A common approach to this tradeo� is to limit the expressive power of languages byproviding only constructs that have an obvious and e�cient implementation. This is themotivation for the condition variable as proposed by Hoare [Hoa74], who admits that:The synchronization facility which is easiest to use is probably the conditionalwait:wait(B);where B is a general Boolean expression, but this may be too ine�cient forgeneral use in operating systems ...The condition variable is primitive so that it can be implemented e�ciently. This sameargument explains the existence of two models of computation in each of the distributedprogramming languages and systems discussed in Chapter 1. The cost of the language

70constructs for local objects is low | appropriate for the restricted generality that theseobjects provide. The language constructs for distributed objects are more expensive dueto their increased generality and functionality.An alternative to limiting the power of the supported abstractions is used in theprogramming languages NIL [SH84] and SETL [SSS81]. Both of these languages supportan abstract data model. NIL provides a relation primitive type. Each relation containsa variable number of rows, each row being a user-de�ned n-tuple of values. This relationtype is very expressive, and subsumes arrays, linked lists, sets, queues, stacks, etc. Theprogramming language SETL provides sets, tuples, and maps of arbitrary element typesas primitive data types.In each of these languages, the programmer is encouraged to use these abstract datatypes for constructing his application. The default implementation of these abstractionsis not e�cient, but these systems provide either manual, semi-automatic, or automaticmeans of choosing more e�cient implementations of the abstract data types used in aprogram.In Emerald, we have recognized the expressive power of a single uniform model ofcomputation and have therefore provided an abstract object model and an abstract typesystem. Objects may be referenced in a uniform manner independent of their locationeven though they may move at arbitrary times. The type system captures the interfaceto objects but conveys no implementation information.As in NIL and SETL, the responsibility for providing an e�cient implementation forthese abstract entities rests with the compiler. Emerald objects can be implemented ina general way that preserves the full generality of the abstraction. Therefore, as in NILand SETL, a correct implementation of a program can be easily generated by using thismost general implementation for all of the objects created or manipulated by the program.The criteria on which the compiler bases its decision of which implementation should beused varies between the languages. In NIL and SETL the selection of an implementation

71for a particular object is determined by the semantics of its data type. For example, theselection may be based on the ratio of modi�cation and inspection operations performedon the object, the domain and range types of a relation, and whether a relation is one-to-one. In Emerald, the expressive power is not in the semantics of particular data typesbut rather in the semantics of objects themselves. The selection of implementation for anobject is based on what is known about the object and how it is manipulated.The abstraction power of Emerald comes from two sources:1. The single object model which uni�es private, local objects and shared, global ob-jects.2. The abstract type system, which uni�es all objects implementing an abstract inter-face.These features simplify the construction of applications by allowing the programmer tode�ne each object only once. A single directory description can be used both for network-wide �le system members and for a private compiler symbol table. While the objectmodel and type system are very general, no application requires this full generality forevery object that it uses. Objects are often used in restricted ways. If a compiler candetect that the full power of an abstraction is not required, it can provide a more e�cientimplementation.6.1 Getting rid of abstract typesAs is discussed in Chapter 3, Emerald supports two notions of type. Abstract typescapture the interface to objects but not their implementation; these are declared for everyidenti�er in Emerald and form the basis for type checking. Objects are created usingobject constructors; the code generated by the compiler for an object constructor formsthe concrete type of the objects created by executing it. In general, only the abstract typeof object references and invocation targets are known to the compiler. Optimizations are

72possible when the concrete types of object references and invocation targets are knownat compile time. When the concrete type of an object reference is determined statically,the compiler knows that no run-time searching will ever be required in response to aninvocation. Therefore, the data structures that support this run-time search (such asoperation vectors [BHJ+87] or caches [CPL83]) need not be allocated or maintained forthis reference. When the concrete type of an invocation target is statically determined,the run-time search can be eliminated and a simple jump to a compiler-determined codeaddress substituted in its place.It is impossible to know the concrete type of every object reference. In fact, onemotivation for supporting abstract types was to allow the addition of newly de�ned objectsto an existing system. Clearly, \old" objects are unable to know the concrete type of \new"objects that were de�ned after them. However, not every object reference requires thisgenerality. Consider the Directory example in Figure 6.1. Assuming that aode.emptyalways returns an object with the same concrete type, we can determine at compile timethe concrete type of the constant state and take advantage of this when generating codefor its invocations.Some primitive abstract types are constrained to have only one implementation or con-crete type | an implementation provided by the system. The reasons for this restrictionare twofold:1. As is discussed in Section 3.5.4, an Emerald abstract type captures the interface toobjects, but does not de�ne the semantics of these objects. The correct functioningof some language constructs depends on the semantics of objects implementing aparticular abstract type. For example, the types Boolean, Condition, Node,Signature, and Time are intimately related to if statements, monitors, objectlocation, type checking, and the real-time related operations of the language. Theonly way that these language constructs can guarantee the semantics of the objectsthat they manipulate is to force the use of a particular implementation. Therefore,

73
const DirectoryCreator == immutable object DirectoryCreatorexport emptyoperation empty ! [aNewDirectory : Directory]aNewDirectory object aDirectoryexport Lookup, Add, Deleteconst DirectoryElement ==record DirectoryElementvar name : Stringvar obj : Anyend DirectoryElementconst aode == Array.of [DirectoryElement]monitorconst state == aode.emptyfunction Lookup[name : String] ! [o : Any]var de : DirectoryElementvar i : Integeri state.lowerboundloopexit when i > state.upperboundde state.getElement [i]if de.getName = name theno de.getObjexitend ifi i + 1end loopend Lookupoperation Add [name : String, o : Any]...end Addoperation Delete[name : String]...end Deleteend monitorend aDirectoryend emptyend DirectoryCreator Figure 6.1: Directory

74these types may not be reimplemented.2. To provide an e�cient base set of types from which others may be constructed, thetype may be constrained to be primitive. The types Character, Integer, Real,String, and Vector are examples.6.1.1 Determining concrete typesThe optimizations that we may perform when concrete types are determined at compiletime include more space-e�cient storage of object references for identi�ers and improvedcode for invocations. Therefore, our algorithm for concrete type determination mustbe able to deduce the concrete types of object identi�ers (constants and variables) andexpressions used as invocation targets. Clearly, the concrete type of a variable or constantidenti�er is determined by the concrete types of the expressions assigned to it. Therefore,determining concrete types involves �guring out the concrete types of expressions andpropagating this information to identi�ers to which they are assigned.There are two kinds of expression in Emerald. First are primitive expressions such asbuilt in operators (== which decides if two object references refer to the same object andlocate which �nds the current location of an object), execution of object constructors,and the various forms of literals. These expressions are implemented by the system, andthe concrete type of the object returned is therefore known.The second kind of expression is an operation invocation. Determining the concretetype of the result of an invocation requires that the compiler examine the code thatimplements the operation. This implies that the concrete type of the invocation targetmust be known, otherwise the code that will execute in response to an invocation requestcannot be known. In addition, the concrete type of the result returned by that operationmust also be known. There are two situations where the concrete type of this result maybe known.In the simplest case, the invocation could always return an object of the same concrete

75object aRecordexport getThing, setThingvar thing : Anyoperation setThing [theThing : Any]thing theThingend setThingfunction getThing ! [theThing : Any]theThing thingend getThingend aRecord Figure 6.2: A record-like objecttype. An example is the invocation of the empty operation on the DirectoryCreator ofFigure 6.1. The body of this operation simply returns a reference to a newly createddirectory object. In this case, the concrete type of the expression is simply the concretetype of the returned object.Second, the concrete type of an invocation result may depend on the concrete types ofthe arguments to this or some other operation on the object. As an example of this case,consider the declaration of a record-like object in Figure 6.2. The concrete type of theresult of getThing operations on aRecord depends on the concrete types of the arguments tothe setThing operations. Our currently implemented algorithm does not attempt to detectthe concrete types of such invocation results. We defer until Section 6.3 the discussion ofa better algorithm which could.6.1.2 The concrete type determination algorithmThe previous discussion demonstrates how the concrete type of identi�ers and expressionsin Emerald depends on the concrete types of other expressions. The basic notion of theconcrete type determination algorithm is therefore to construct a directed graph whosevertices represent identi�ers (variables and constants), and expressions. An edge froma vertex a to a vertex b indicates that the concrete type of a depends on that of b.Speci�cally, we traverse the program parse tree to build a directed graph G = fV;Eg,

76where each edge (a; b) 2 E indicates that the concrete type of a depends on that of b. Avertex is created in V for each identi�er de�nition node (constant and variable), invocationnode, and expression node in the original program tree. Each vertex may be marked withone of three marks:Unde�nedThe concrete type of this vertex has not yet been considered.UnknownThe concrete type of this vertex cannot be determined by the algorithm.KnownThe concrete type of the vertex is known, and is marked in the vertex.Depending on the kind of node encountered, add edges to the graph G:Assignment statement (i e):Constant declaration (const i == e):Variable declaration with initialization (var i : t e):All of these are assignments of e to i, therefore we add an edge from i to e.Invocation (t.opname[a1; : : : ; an]):Add an edge from the vertex representing the invocation to the vertex representingthe target of the invocation (t).To illustrate the graph creation process, consider the example Emerald program inFigure 6.3. This program results in the construction of the graph in Figure 6.4. Eachassignment statement results in the addition of a single edge to the graph.The heart of the analysis phase is an algorithm that detects the strongly-connectedcomponents of a directed graph. A strongly-connected component of a directed graph G= fV;Eg is a maximal set of vertices V 0 � V such that for every pair of vertices <u, v>

77var x, y, z : Anyx object object1 � � � end object1y object object2 � � � end object2z xx zy x Figure 6.3: Concrete type determination example
object1 object2

z x

yFigure 6.4: Concrete type determination example | dependency graph2 V 0, there exists a path in G from u to v and from v to u. In other words, there is apath from every vertex in a strongly-connected component to every other vertex in thestrongly-connected component. In terms of detecting concrete types, such a strongly-connected component is a set of expressions whose concrete types depend on each other,and therefore must all be the same.We propagate information backwards along the edges of the graph using an algorithm[AHU74, pp. 189-195] that �nds the strongly-connected components of a graph. Thisalgorithm �nds strongly-connected components of G in \leaf to root" order. \Leaf toroot" order implies that, if an edge (a; b) exists in G, then a depends on b, and thereforethe component containing b will be presented either before the one containing a (if a andb are not in the same strongly-connected component) or at the same time as a (if theyare in the same strongly-connected component). From the example in Figure 6.4, the

78strongly-connected components are:� object1� object2� x, z� yThis is also a valid ordering, since the prerequisites of each vertex are presented beforeany vertex that depends on it. Other valid orderings are also possible.As each strongly-connected component is produced, we determine the concrete type ofeach vertex in the set depending on the kind of node that vertex represents. As thevertices representing concrete types of the prerequisites of a vertex are considered, amark of unde�ned implies that the prerequisite vertex is in the same strongly-connectedcomponent as this one, and therefore will have the same concrete type. We thereforelook at the vertices in each set as it is discovered by the strongly-connected componentsalgorithm and attempt to �nd a concrete type that can be assigned to all vertices inthe set. For each vertex we compute a concrete type based on the prerequisites of thatvertex. If any prerequisite of a vertex is marked unknown, then the result concrete typeis unknown. Otherwise:Identi�er node (e.g., x, y, z):If the concrete types of the prerequisites are all the same or unde�ned, then theresult concrete type is that concrete type. Otherwise, the result concrete type isunknown.Expression node (e.g., locate e, e == e):These expressions return primitive types (Node or Boolean) as results and so weknow the result concrete type.

79Literal node (e.g., \a string", 2, object ... end):Literal nodes are leaves of the graph, and therefore the result concrete type is obvi-ous.Result of an invocation node (e.g., t.opname[a1; : : : ; an]):If the concrete type of the invocation target is unknown, then the concrete type ofthe result is also unknown. Otherwise, if executing the invocation always returnsthe same concrete type, C, then C is the result concrete type. Otherwise, the resultconcrete type is unknown.If the result concrete types of every vertex in the set are the same, then mark each vertexin the set as known with that concrete type. Otherwise, mark each vertex in the set asunknown.Looking at the example, the concrete types of object1 and object2 are trivially computed(let us call them ct1 and ct2), and these expression nodes marked as known with those twoconcrete types. When looking at the set of vertices fx, zg, we �nd that these identi�ersonly depend on each other and the object constructor object1, therefore both these verticesmay be marked known with concrete type ct1. When looking at y, we �nd that it dependson object2 (with concrete type ct2) and x (with concrete type ct1). We therefore concludethat we do not know the concrete type of y, and mark it unknown.The execution time of this algorithm is linear in the size of the program.� A single pass is made over the parse tree to construct the graph.� The number of vertices in the graph is limited by the number of constants, variables,expressions, and invocations in the original program.� The number of edges in the graph is similarly limited by the number of statementsand expressions in the program, since each programming language construct con-tributes no more than 1 edge.

80� The worst case (and average case) running time of the algorithm to propagate in-formation along the edges of the graph is O(Max(jV j; jEj)) [AHU74, pp. 189-195].6.2 Making objects localImportant optimizations are also possible when the Emerald compiler can determine thatobjects are local to some containing object. In general, the implementation of Emeraldobjects must allow them to be moved at arbitrary times, and code generated to invokean object must take into consideration the possibility that the object will not be on thesame node as the invoker. When it is known at compile time that an object will alwaysbe local, we may perform the following optimizations:� We may use a location dependent pointer to it (a real address), rather than a locationindependent reference. This saves both space for the pointer and access time whenperforming invocations on the object.� We may generate code for invocations that assumes that the object is resident on thismachine; no check of residency must be done before proceeding with an invocation.� We may compile operations on the object in-line. This is not possible for arbitraryobjects since the object may move during the execution of the operation, and arbi-trary primitive operations (e.g., instance variable access and assignment) cannot beperformed remotely. In order to perform this optimization, we must also know theconcrete type of the object.Since objects that are declared by the programmer to be immutable may be freelycopied when references are sent across machine boundaries, we know that immutableobjects will always be resident. Therefore, we may perform the same optimizations onthem as we do for objects that we know are local to some containing object.For an example, consider the directory implementation in Figure 6.1 on page 73. Thisdirectory has a constant state which is initialized to be an empty array of DirectoryEle-

81ments. In principle, nothing prevents the state array from being moved to some other nodein the network or exported as the result of some invocation on the directory. However, inthis example, the array state is completely local to its containing directory | no referencesare exported, moreover, it isn't moved. Since the state object is not remotely accessedand does not move independently of its containing object, the compiler is free to providea more e�cient implementation | one that cannot be remotely accessed or moved. Notethat we are not restricting what the programmer may do with his objects: we are takingadvantage of what the programmer chooses not to do with them.6.2.1 Determining localityThe determination of local objects is similar to the determination of concrete types de-scribed in Section 6.1.1. Again, we are interested in the locality of object references foridenti�ers (allowing us to create more space-e�cient objects), and the locality of invocationtargets (to generate improved code for invocations). The concrete type of an expressionis not a�ected by operations performed on the object it denotes, but may be determinedsolely from the concrete types of its sub-expressions. Object locality on the other handis a�ected by actions performed on it (such as moving it) or identi�ers to which it maybe assigned. In other words, while concrete type information ows only one way on as-signments (the concrete type of the expression a�ects the concrete type of the identi�erto which it is assigned), locality information ows both ways (moves of the identi�er orexpression a�ect the locality of both). In addition, before it can known that an objectis local, the compiler must know its concrete type. Any object may move itself, give outreferences to itself as the results of invocations, and in other ways prevent the compilerfrom using a local implementation for it. When we use a local implementation for anobject, we must know that it does none of these things. Therefore, we attempt to detectthe locality of objects only after concrete types have been determined.In detecting which Emerald objects are local, we therefore must �nd objects that arecreated and manipulated purely locally, and whose concrete types do not do things that

82make them non-local. Again the most complicated task is determining the locality ofinvocation results. There are two cases to consider.In the simple case, the invocation returns a reference to a newly created object. Thelocality of this object depends on its concrete type (what it does to itself) and how theobject is manipulated. No additional dependencies are required.The more di�cult case corresponds to the more complicated case for determiningconcrete types, when the locality of an invocation result depends on the locality of thearguments to this or some other invocation on the object. Consider again the record-like object of Figure 6.2. The locality of the result of a getThing invocation depends onthe locality of the arguments to the putThing invocations executed on this object. Ourimplemented algorithm does not detect such potentially local invocation results. Section6.3 discusses this further.6.2.2 The local object determination algorithmAn algorithm similar to the one used to determine the concrete type of object referencesdetects whether objects are local to their containing objects. In constructing the graph,almost every edge (a; b) added to the graph in the previous algorithm is accompanied,when detecting locals, by the reverse edge (b; a). The marks on the vertices are alsoslightly di�erent:Unde�nedThe locality of this vertex has not yet been considered.NonlocalThis vertex represents a non-local object.LocalThe vertex represents a local object.In addition, the actions performed in each step, dependent on the kind of parse tree nodethat the vertex represents, are di�erent. Speci�cally:

83Assignment statement (i e):Constant declaration (const i == e):Variable declaration with initialization (var i : t e):All of these include an assignment of e to i, therefore add edges from i to e and frome to i.Result of an invocation (t.opname[a1; : : : ; an]):If the concrete type of the target of the invocation is known, and the invocationcauses the creation and return of a new object then do nothing. Otherwise, markthe vertex nonlocal.Move, �x, un�x, re�x statement:Since performing one of these operations on an object forces us to use the most gen-eral implementation, mark the vertex representing the operand expression nonlocal.The algorithm of Section 6.1.2 is used to detect the strongly-connected components ofthe dependency graph. The vertices that form a strongly-connected component may bemarked local only if all three of the following conditions hold:1. All prerequisite vertices are marked local.2. The concrete type of the vertices is known. Since each edge added in determin-ing concrete types is also included when detecting locals, the concrete types of allprerequisites will be the same if it is known.3. That concrete type neither moves (or �xes or re�xes) itself nor returns a referenceto itself from any invocation.If these conditions hold, then the vertices in the strongly-connected component are markedlocal; otherwise, they are nonlocal.

846.3 A better algorithmThe algorithms just presented for determining the concrete types and locality of objects donot attempt to discover anything about the results of any but the most trivial invocations.As mentioned in Sections 6.1.1 and 6.2.1, there are cases when the attributes (concretetype or locality) of an invocation result depend on the attributes of the arguments to otherinvocations on the object. Consider again the record-like object from Figure 6.2.object aRecordexport getThing, setThingvar thing : Anyoperation setThing [theThing : Any]thing theThingend setThingfunction getThing ! [theThing : Any]theThing thingend getThingend aRecordThe attributes of the result of getThing operations on aRecord depend on the attributes ofthe arguments to the setThing invocations performed on it. In fact, to deduce somethingabout the attributes of the result of a getThing operation, the compiler must have availableinformation about the attributes of the argument to every putThing invocation executedon this object. This implies that the compiler must be able to �nd all invocations on thisobject. This is only possible when the scope of references to the object is limited, or inother words, when the object is used only locally. The locality determination algorithmjust presented �nds exactly these references, and can therefore be used to provide thisinformation. Unfortunately, we have seen that determining locality also depends on con-crete type determination. These two algorithms must be applied together to determinethe concrete type of the results of invocations that depend on the arguments to otherinvocations on the object. There are two possible ways to combine these algorithms.First, we could apply the concrete type and locality determination algorithms iter-atively, stopping when no progress is made. It is easy to construct arti�cial situationswhere the concrete type of a depends on the locality of b which depends on the locality

85of a which depends on the concrete type of a. Such circular dependencies cannot be re-solved by iterative application of these algorithms. On the other hand, our preliminaryexperience shows that such situations do not often occur in real programs.Second, we could build a graph that contained vertices representing both the concretetypes and locality of program constructs and use the strongly-connected components al-gorithm to discover an evaluation order. This combined graph is much larger than the twoseparate graphs. Since the attributes of an invocation result may depend on the attributesof any argument to the invocation, we must add edges from every invocation node to everyargument. If we knew the concrete type of the target when constructing the graph how-ever, we would only add edges to arguments that a�ect the attributes of the result. Thisgreatly expands the size of the dependency graph, and the size of the strongly-connectedcomponents. In addition, the analysis of each strongly connected component when discov-ered in the graph is more complicated. We can have situations where the concrete typesand locality of a number of identi�ers are all mutually dependent. Much more complicatedalgorithms must be developed to sort out such situations.Statistics on the success of our currently implemented algorithm, an algorithm thatcould determine the attributes of invocation results as hinted to above, and a perfectalgorithm are presented in Section 7.3. These statistics show that our current simplealgorithm performs almost as well in practical situations as the better algorithms justoutlined.6.4 DiscussionIn contrast to languages that have restricted their expressive power to constructs thathave obvious e�cient implementations, or have two or more user-visible constructs withdi�erent power and implementations, Emerald has a very general object model and anabstract type system. The responsibility for implementing objects e�ciently (relative tothe generality required by each object) rests with the compiler. We have discussed the

86algorithms used by the compiler to detect situations where the full generality of the objectmodel and type system are not required, and outlined alternative approaches that lead tobetter algorithms.

Chapter 7Performance
Two major goals drove the design of Emerald. The �rst was that Emerald should supporta uniform object model suitable for the construction of both local and distributed objectswith identical semantics. We were unwilling to compromise this goal for any reason.Second, we intended that the performance of objects should be appropriate to the uses towhich they are put. This chapter discusses the performance goals of Emerald and providesmeasurements to substantiate our claim that these performance goals have been met. Inaddition, we discuss the primary factors a�ecting the performance of Emerald objects andcompare Emerald performance to that of similar systems.7.1 Performance goalsIn designing Emerald, we anticipated three categories of objects:Primitive objectsPrimitive objects include characters, integers, reals, and Booleans. Since these ob-jects are small and immutable they can be freely copied rather than shared andaccessed through pointers. Therefore, we expect that they should be allocated di-rectly in the data areas of objects that reference them and manipulated by in-linecode invoking hardware operations. They should be as e�cient as primitive objects(values of primitive types) in any other programming language.

88Local objectsSome objects are used in ways that make them local to some containing object. Suchobjects should have a minimal amount of storage overhead and operations invokedon them should have performance comparable to the cost of a procedure call in atraditional programming language.Global objectsWhen the full generality of objects is used, we are willing to pay more in both storageoverhead and time for operation invocation. However, even though objects in thiscategory have the potential to be on other machines requiring network communi-cation for operation invocation, we expect that a signi�cant fraction of invocationswill be on objects that are currently co-located with their invoker. For this reason,we have two goals for global object invocation:� When the target of an invocation is on the same machine as its invoker (resident)the invocation time should approach procedure call time.� When an invocation target is on a di�erent machine from its invoker (non-resident) invocation involves the run-time kernel and network communication.In such cases, the invocation time will be orders of magnitude greater than invo-cation times for invocations on the same machine. Our goal is to perform theseremote invocations in time not much worse than the network overhead requiredto send and receive the messages. The performance of remote invocations isdetermined by the communications hardware in addition to the operating sys-tem upon which Emerald is implemented as well as the structure of Emerald'srun-time kernel. The performance of global invocations is not reported here,but can be found in Eric Jul's dissertation [Jul87].The Emerald object model was designed with these three categories of implementa-tion in mind. We expect to achieve the performance of direct code for primitive objects,

89procedure calls for local objects, and remote procedure calls for non-resident global ob-jects. Our expectation of near procedure call performance for resident global objects wasambitious. Typically, potentially remote objects are managed exclusively by the run-timekernel of a distributed system. Therefore, invocations of such objects typically involvesigni�cantly more machinery, and therefore more expense, than do invocations on objectsknown to be local.7.2 Emerald performanceThe current prototype of Emerald is implemented on a local network of DECTMMicroVAXTM II workstations running the ULTRIXTM operating system. The only impactthat using ULTRIX as a prototyping environment has on these performance measuresrelates to stack bounds checking. All Emerald objects on a machine execute in a singleaddress space. Translated into ULTRIX terms, an Emerald node is an ULTRIX process.Within this address space, the Emerald kernel manages multiple Emerald processes, eachrequiring its own stack. Since ULTRIX does not allow page-by-page memory managementcontrol, each Emerald invocation includes an explicit stack check to detect when a processhas exhausted its current stack allocation.Table 7.1 shows the performance of a number of primitive operations on the MicroVaxII. These provide a basis against which the performance of Emerald operations may bemeasured. Table 7.2 shows the time taken by invocations in Emerald.Primitive TimeOperation (microseconds)integer addition 0.4real addition 3.4procedure call/return 13.4procedure call/return with stack check 16.4Table 7.1: MicroVax II primitive operation times

90Emerald Example TimeOperation (microseconds)primitive integer invocation i i + 23 0.4primitive real invocation x x + 23.0 3.4local invocation localobject.nop 16.6resident global invocation(known concrete type) globalobject.nop 19.4resident global invocation(unknown concrete type) globalobject.nop 23.1Table 7.2: Timings of Emerald invocations7.2.1 DiscussionWe feel that these performance measures are very good. In fact, except for micro-optimizations, better performance cannot be realized given our hardware. Invocationson direct objects are compiled into native code for the machine. Invocations on localobjects are compiled into a procedure call sequence with e�ciency comparable to thatof the procedure call instructions on the machine. The most surprising statistic is theperformance of resident global objects. The overhead for invocation of Emerald objectsimplemented in the most general manner but currently on the same machine as the invokeris less than 50% of the procedure call time. In other distributed systems, invocation of anobject on the same machine requires milliseconds (Clouds [Spa86]), or tens of milliseconds(Eden [ABLN85], ISIS [BJRA85]). This high cost of invocations on potentially remoteobjects stems from 2 factors:1. Resolving the reference used to perform the invocation. Global objects are usuallyreferenced with location-independent names or capabilities. These must be resolvedbefore checking the location of the invoked object.2. Crossing a protection boundary. Each object is a separate protection domain; onlycode de�ned by the object itself is allowed to manipulate its representation. When

91an invocation is performed, the access rights must be checked, and the representationmust become available for direct access. A signi�cant fraction of the cost of a residentinvocation in Clouds is related to performing this mapping [Spa86].Since the Emerald compiler provides the protection necessary to ensure that the represen-tation of object cannot be corrupted, all Emerald objects on a machine may safely sharethe same address space. Emerald also optimizes for the local case, since it is expected tobe most common. Location dependent references (real pointers to descriptors) are used,even for global objects, allowing the compiled code access to information concerning theobject. Invocation is done by building an activation record on the caller's stack, checkingto see if the target object is resident, and if so, executing the invocation without any kernelcalls. If the residency check fails, the kernel is called to transmit the activation record tothe target machine and perform the invocation there.7.3 Concrete type and locality determinationChapter 6 discusses the optimizations performed by the Emerald compiler based oncompile-time determination of the concrete type and locality of objects. The perfor-mance �gures in Table 7.2 indicate that when the concrete type of a reference is knownat compile time that a 16 percent reduction in invocation time results. When an object isknown to be local, the reduction in invocation time increases to 28 percent. In addition,when an object is known to be local, the compiler is allowed to do procedure integration,or expand the body of the invoked operation in place of the invocation sequence. This hasthe potential of removing the invocation overhead completely, at the expense (usually)of expanded object code size. Invocations of global objects may not be expanded inlinesince they have the potential to move at any time. These improvements indicate thatdetection of situations where either the concrete type or the locality of a reference can bedetermined at compile time is important to the performance of the Emerald system.

927.3.1 Success of our algorithmThe fraction of references for which concrete type or locality information can be determinedat compile time varies with the application. We have analyzed the performance of ouralgorithm (as currently implemented in the compiler), on a collection of object de�nitionscomprising the Emerald mail system.Table 7.3 summarizes the results of our analysis. It presents the static count of invoca-tions generated by type for three detection algorithms when executed on the mail systemitself (not including the user interface objects). These three algorithms are:� A perfect algorithm | one that could detect every situation where an object is usedin restricted ways.� No detection | the only optimizations are those made available because of theprimitive types which may have only one implementation.� The algorithm currently implemented in the compiler.The column labeled � shows the di�erence between the perfect algorithm and the others.Perfect algorithm No detection Implemented algorithmInvocation Type Number � Number � Number �total 595 - 595 - 595 -inlined 451 - 412 -39 451 -local 59 - 0 -59 59 -self 7 - 7 - 7 -immutable 14 - 14 - 14 -global 64 - 162 +98 64 -known concrete type 557 - 464 -93 543 -14unknown concrete type 38 - 131 +93 52 +14Table 7.3: Performance of three detection algorithms | mail systemWithout concrete type and local object detection, 98 invocations that could be opti-

93Perfect algorithm No detection Implemented algorithmInvocation Type Number � Number � Number �total 345 - 345 - 345 -inlined 211 - 211 - 211 -local 0 - 0 - 0 -self 24 - 24 - 24 -immutable 0 - 0 - 0 -global 110 - 110 - 110 -known concrete type 321 - 243 -78 321 -unknown concrete type 24 - 102 +78 24 -Table 7.4: Performance of three detection algorithms | user interfacemized to either inlined operations or local procedure calls remain with the most generalimplementation. The currently implemented algorithm detects all 98 of these potentialoptimizations. The only things left undetected by the current implementation are the 14invocations on immutable objects. A perfect algorithm could detect the concrete typesof these invocations. The better algorithms described in Section 6.3 could also determinethese 14 concrete types. The remaining 64 global invocations (38 of which are to objectswhere the concrete type are not known) are actually required by the application. The se-mantics of the mail system requires the generality of these remaining invocations to allowfor multiple implementations of the mailbox, mailmessage, and directory abstractions.Table 7.4 presents these same statistics for the objects comprising the mail system user-interface. The user interface to the mail system is heavily biased by its input/output re-lated invocations on the standard input and output streams. Invocations on these streamsare global, since the streams are �xed on particular machines (the one where the displayis), and the interface objects may be moved arbitrarily. In this example, the implementedalgorithm performs as well as a perfect algorithm would.The overall static and dynamic behavior of the implemented algorithm on the mailsystem can be seen in Table 7.5. The dynamic measures are the result of sending andlater reading ten short mail messages.

94Static DynamicInvocation Type Number % Number %total 940 100.0 4429 100.0inlined 662 70.4 2995 67.6local 59 6.3 306 6.9self 31 3.3 277 6.3immutable 14 1.5 75 1.7global 174 18.5 776 17.5known concrete type 864 91.9 4121 93.0unknown concrete type 76 8.1 308 7.0Table 7.5: Overall frequency of invocations by typeBoth statically and dynamically, over 2=3 of invocations are primitive and generatemachine instructions. Of the remaining 1=3, an additional 11-15% (local, self, and im-mutable invocations in the table) are implemented as procedure calls, since it is known atcompile time that the target will be on the same machine as the invoker. Only 18% of allinvocations require an invocation sequence capable of dealing with objects that may beresident on other machines.The high frequency of input/output related invocations in the mail system user inter-face objects skews this information somewhat. Table 7.6 presents this same informationremoving the invocations on the standard input and output streams. If we discount thee�ect of the Input/Output related operations of the mail system, we �nd that only 11.2%of invocations statically or 6.5% of invocations dynamically are on global objects. Wemay also see that only approximately 8% of invocations actually use the exibility of theabstract type system.7.3.2 DiscussionWhile our currently implemented algorithm for the detection of concrete type and local-ity information is successful in determining the attributes of only very simple invocationresults, they perform very well in actual situations, capturing almost all of the concrete

95Static DynamicInvocation Type Number % Number %total 863 100.0 3907 100.0inlined 662 76.7 2995 76.7local 59 6.8 306 7.8self 31 3.6 277 7.1immutable 14 1.6 75 1.9global 97 11.2 254 6.5known concrete type 787 91.9 3599 92.1unknown concrete type 76 8.1 308 7.9Table 7.6: Frequency of invocations by type | discounting input/outputtype and locality information that can be found in the mail system application. Their cur-rent major aw lies in their inability to propagate concrete type and locality informationthrough \record-like" objects | records, vectors, and arrays. The more sophisticated algo-rithms outlined in Section 6.3 could perform this propagation, at the expense of increasedcompilation cost.7.4 SummaryA major criticism of object-based programming languages and systems is that they areine�cient. Our purpose in discussing the performance of the current implementation ofEmerald is not to brag about shaving o� a microsecond here or there. We have, rather,wished to demonstrate that the use of an object-based language | even in a distributedcomputing environment | is not an inherent source of ine�ciency. While the Emeraldmodel of mobile objects viewed through loose-�tting abstract types is very general, it canbe implemented e�ciently; our current implementation is a proof by construction. Muchcan be done to allow the luxury of a general model, while only paying for that generalityactually used in an application.

Chapter 8Conclusion
We have addressed the problem of constructing application programs for execution in adistributed environment. In a distributed environment, there are two natural implemen-tation styles available. The more expensive style is appropriate for entities that are tobe remotely accessed or moved. Private data within such a remotely accessible entitymay use a much simpler, more e�cient implementation style. The performance di�erencebetween the two styles can be as high as a factor of 1000; an operation that can be done inmicroseconds on a local object may require milliseconds to perform on a remote object. Anumber of programming languages and operating systems have also addressed the prob-lem of constructing distributed applications. These languages and systems have reectedthe semantic and performance di�erences between local and remote computation in themodels of computation that they support. Each of them provide two levels of support: onewhose semantics and performance are appropriate for the construction of private entities,the other appropriate for distributed entities that may be shared and remotely accessed.The programming language Emerald provides a single model of computation, the ob-ject, which is appropriate for constructing objects at all levels of a distributed system.Primitive objects such as integers and characters, local data objects such as records andarrays, and distributed objects such as �les, directories, and compilers are de�ned in auniform way. As in existing systems, there are multiple implementation styles that may

97be used for each object; the task of providing an implementation whose cost is appropriateto the generality required by individual objects is given to the compiler.8.1 ContributionsThis dissertation has presented a number of signi�cant contributions. First, we havedemonstrated that a single object model can be de�ned that is appropriate for the con-struction of every object in a distributed system. A language that incorporates such asingle object model has been designed and implemented.Second, we have designed and implemented a type system that completely separatesspeci�cation from implementation, treats types as �rst class objects, and provides poly-morphism in a simple and straightforward manner. To our knowledge, no type systemincorporating all of these features has previously been de�ned or implemented.Third, we have recognized two instances of the general principle that very abstractmodels can be implemented at no cost when not actually used by an application. Thede�nition of the Emerald object model implies that in the most general case nothingabout the implementation or location of a target object may be known when compilingcode for invocations. This generality of the object model and type system provides theexibility necessary for the construction of some distributed applications (such as thedirectory system). On the other hand, in most instances, objects do not require the fullgenerality of either the object model or the type system, and the compiler can generatemuch improved code by detecting these situations.These three contributions are not entirely independent. Our original purpose in de-signing Emerald was to investigate the possibility of a language where a single, uniformmodel was used for the construction of both local and distributed objects. The evolutionof the type system and the compiler techniques for detecting situations where the fullpower of an abstraction is not required followed from that goal. In fact, the type systemcould not divorce itself from concerns about implementation unless there was some other

98feature (the object model) that provided representation independence. In addition, thecompiler techniques to detect the use of limited abstractions would not be appropriateunless a single, general abstraction was available. On the other hand, these contributionsare also important independently. A type system that allows multiple implementationsof an abstraction to co-exist may be useful in an environment other than distributed ob-jects. Compiler techniques to detect situations where only limited generality is used in aprogram have application to more than just object-based programming.8.2 Further researchThe design and implementation of the Emerald programming language has demonstratedthe validity of the thesis that a uniform object model can be e�ciently implemented in adistributed environment. This work has also brought to our attention areas where furtherwork is required.The cost of abstractionThe Emerald programming language is based on the philosophy of providing a simple highlevel abstraction, and relying on the system for its e�cient implementation. A similarphilosophy can be seen in the design of the SETL and NIL programming languages. Twoquestions remain to be answered:� This principle has previously been applied to programming languages (with theadvent of high level languages to replace machine code), and operating systemsmemory hierarchies (with virtual memory replacing explicit overlays). In both thesecases, and in our case as well, the preliminary response to these proposals is that thecost would be exorbitant. Can this model be applied to other aspects of programminglanguage or operating system design?� We have taken this principle to its limit. There is no mechanism in Emerald bywhich a programmer my relate to the compiler his knowledge (or belief) that a

99certain object is used in restricted ways and thus should be a candidate for an op-timized implementation. We have previously criticized two other instances wheredesigners have gone two far in favor of abstraction: the design of distributed systemsthat completely hide distribution from the programmer, and the design of virtualmemory systems that completely hide the memory hierarchy. How should informa-tion that a programmer knows about the nature of his application be communicatedto the compiler? When is it appropriate to allow programmer involvement in theimplementation of an abstraction, and when is it not?The type systemWe noted in Section 3.5.4 that the Emerald type system relies heavily on the names cho-sen for operations, with the result that types could either conform accidentally when theyshould not or not conform when they should based solely on the names chosen for oper-ations rather than on the semantics of these operations. We suspect that these problemscould both be resolved, and that Emerald could be more suitable for the construction ofveri�ed software, if a type de�nition included semantic information as well as syntacticinformation. If a type de�nition was a formal speci�cation of the objects that it describedthen the conformity algorithm would be able to compare two types based on their formalspeci�cation rather than the syntax of their operation signatures. We suspect that such atype system would provide a basis in which object de�nitions would be routinely formallyproven to match their speci�cations.ProtectionOne interesting feature of the Emerald implementation is the tight coupling of the com-piler and operating system. The Emerald compiler takes responsibility for tasks thattraditionally belong to the operating system (such as protection from faulty programs),and leaves to the operating system tasks that traditionally are the compiler's (such as thehandling of illegal dereferences of nil and performing remote invocations). This principle

100may be extended to compiler provided security as is mentioned in Section 5.4.Object-based operating systems have often used capabilities to provide security. Ca-pabilities are protected object references containing access rights; the invocation of anoperation on an object requires a particular access right in the capability used to namethe object. In the face of the multiple inheritance that Emerald's abstract type systemencourages, the assignment of abstract access rights to concrete bits in the capabilities isvery di�cult, probably impossible [Bla85].However, abstract types as de�ned in Emerald have a number of similarities with ca-pabilities [Lev84]. Invoking an operation on an object referenced by an Emerald constantor variable requires the abstract type of the reference to include the requested operation.As de�ned in Chapter 3, the widening of Emerald abstract types (to include more op-erations) is restricted only by the operations that the object actually implements. If itwere possible to prohibit the widening of particular references to objects, the security ofcapabilities could be provided by the type system. We are currently investigating thispossibility.Accommodating heterogeneityWe have assumed throughout the design and implementation of Emerald a very homoge-neous system: the processors in the system must all be identical. Since such homogeneousenvironments rarely occur in practice, it seems natural to extend Emerald to execute in aheterogeneous system.The accommodation of multiple machine types could be handled (conceptually) quitesimply. The data area of each object is fully described by run-time descriptors in orderto support garbage collection and translation when objects are moved. If this informationwas expanded slightly (to mark data that does not require attention when moving betweenhomogeneous processors, but which may need to change representation when moving be-tween heterogeneous processors), it could be used to change representation when movingan object from a machine of one type to one of another type. Also, when object descrip-

101tions are compiled, machine code must be generated for each machine type in the system;this could also be done as needed rather than all at once.Exploiting parallel hardwareEmerald was designed for the construction of application programs to execute in a looselycoupled network of uniprocessors. The ever-decreasing cost of processors that led to thefeasibility of such distributed systems is now leading to very a�ordable multiprocessors.We are now investigating whether Emerald is an appropriate language for the programmingof such multiprocessor machines.Use of the languageThe design of the Emerald programming language relies heavily on experience gainedwith the design, implementation, and use of the Eden distributed operating system andthe Eden Programming Language. While the object model of Emerald is very similarto that of Eden, Emerald and Eden are di�erent, and the appropriateness of Emerald asa language for the construction of distributed applications can only be measured afterapplications have been constructed using it. Therefore, while preliminary experience inthe use of the language by its authors and a few other interested bystanders has beenfavorable, its use by a wider spectrum of programmers for a wider variety of applicationsis necessary before we can substantiate our claim that Emerald simpli�es the constructionof distributed applications.8.3 SummaryThe construction of application programs to execute on distributed hardware is a di�culttask. The Emerald programming language simpli�es this task by providing a single ab-straction model | the object | that may be used to de�ne both local and distributedentities. Since all objects are de�ned using the same mechanism and have the same se-mantics, an application can be developed using local objects and then distributed without

102changes to the de�nitions of the objects used.Although all objects have the same semantics and are de�ned using the same objectmodel, it is not the case that they all have the same implementation. The Emerald com-piler detects situations where the full generality of the object or type system abstractionis not required for a particular object, and provides an improved implemenation. In thisway, one can have a very general model, but only pay for the generality actually used inan application.

Bibliography[ABBW84] Guy T. Almes, Andrew P. Black, Carl Bunje, and Douglas Wiebe. Edmas: Alocally distributed mail system. In Proceedings of the Seventh InternationalConference on Software Engineering, Orlando, Florida, March 1984.[ABLN85] Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe.The Eden System: A Technical Review. IEEE Transactions on SoftwareEngineering, SE-11(1):43{59, January 1985.[Ada83] Reference Manual for the Ada Programming Language, January 1983.ANSI/MIL-STD-1815A.[AH84] Guy Almes and Cara Holman. Edmas: An object oriented locally distributedmail system. Technical Report 84-08-03, Department of Computer Science,University of Washington, Seattle, Washington, December 1984.[AH85] Guy Almes and Cara Holman. The eden shared calendar system. TechnicalReport 85-05-02, Department of Computer Science, University of Washington,Seattle, Washington, June 1985.[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�ery D. Ullman. The Design andAnalysis of Computer Algorithms. Addison-Wesley, 1974.[All83] James E. Allchin. An Architecture for Reliable Decentralized Systems. PhDthesis, Georgia Institute of Technology, Atlanta Georgia, September 1983.Also: Technical Report GIT-ICS-83/23, Georgia Institue of Technology.[And82] G. R. Andrews. The distributed programming language SR | mechanisms,design and implementation. Software | Practise and Experience, 12(8):719{754, August 82.[BH77] Per Brinch Hansen. The Architecture of Concurrent Programming. PrenticeHall Series in Automatic Computation. Prentice Hall, 1977.[BH78] Per Brinch Hansen. Distributed processes: A concurrent programming con-cept. Communications of the ACM, 21(11):934{941, November 1978.[BH79] Per Brinch Hansen. The programming language Concurrent Pascal. IEEETransactions on Software Engineering, 1(5):50{56, May 1979.

104[BHJ+87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.Distribution and abstract types in Emerald. IEEE Transactions on SoftwareEngineering, 13(1), January 1987. Also Technical Report 86-02-04, Depart-ment of Computer Science, University of Washington.[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object struc-ture in the Emerald system. In Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages and Applications, pages 78{86.ACM, October 1986. Also Technical Report 86-04-03, Department of Com-puter Science, University of Washington, revised June 1986; Published inSIGPLAN Notices, vol. 21, no. 11, November 1986.[BHM77] Forest Baskett, John H. Howard, and John T. Montague. Task communica-tion in DEMOS. In Proceedings of the Sixth ACM Symposium on OperatingSystems Principles, pages 23{31. ACM, November 77.[Bir85] Kenneth P. Birman. Replication and fault-tolerance in the ISIS system. InProceedings of the Tenth ACM Symposium on Operating System Principles,pages 79{86. ACM, December 1985.[BJRA85] K.P. Birman, T.A. Joseph, T. Raeuchle, and A.E. Abbadi. Implementingfault-tolerant distributed objects. IEEE Transactions on Software Engineer-ing, SE-11(6):502{508, June 1985.[Bla85] Andrew P. Black. Supporting distributed applications: Experience with Eden.In Proceedings of the Tenth ACM Symposium on Operating System Principles,pages 181{93. ACM, December 1985.[BN84] Andrew D. Birrell and Bruce J. Nelson. Implementing remote procedure calls.ACM Transactions on Computer Systems, 2(1):39{59, February 1984.[BRV84] F. Baiardi, L. Ricci, and M. Vanneschi. Static checking of interprocess com-munication in ECSP. In Proceedings of the 1984 Symposium on CompilerConstruction, pages 290{299. ACM SIGPLAN, June 1984. In ACM SIG-PLAN Notices 19:6.[Car86] Luca Cardelli. A polymorphic lambda-calculus with type:type. TechnicalReport 10, Digital System Research Center, 130 Lytton Avenue, Palo Alto,CA 94301, May 1986.[CMMS79] David R. Cheriton, Michael A. Malcolm, Lawrence S. Melen, and Gary R.Sager. Thoth, a portable real-time operating system. Communications of theACM, 22(2):105{115, February 1979.[Coo79] Robert P. Cook. �Mod| a language for distributed programming. In Proceed-ings of the First International Conference on Distributed Computing Systems,pages 233{241. IEEE, October 1979.[CPL83] Thomas J. Conroy and Eduardo Peligri-Llopart. As assessment of method-lookup caches for Smalltalk-80 implementations. In Glenn Krasner, editor,Smalltalk-80: Bits of History, Words of Advice, chapter 13, pages 239{247.Addison-Wesley, 1983.

105[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,and polymorphism. Computing Surveys, 17(4):471{522, December 1985.[CZ83] David R. Cheriton and Willy Zwaenepoel. The Distributed V kernel andits performance for diskless workstations. In Proceedings of the Ninth ACMSymposium on Operating Systems Principles, pages 129{140. ACM, October1983.[DD79] A. Demers and J. Donahue. Revised report on russell. Technical ReportTR 79-389, Department of Computer Science, Cornell University, September1979.[DD85] James Donahue and Alan Demers. Data types are values. ACM Transactionson Programming Languages and Systems, 7(3):426{445, July 1985.[Fel79] Jerome A. Feldman. High level programming for distributed computing. Com-munications of the ACM, 22(6):353{368, June 1979.[GCKW79] D. I. Good, R. M. Cohen, and J. Keeton-Williams. Princples of provingconcurrent programs in gypsy. In Proceedings of the Sixth Symposium onPrinciples of Programming Languages, pages 42{52. ACM, January 1979.[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language and its imple-mentation. Addison-Wesley Publishing Company, 1983.[GSW86] Irene Greif, Robert Seliger, and William Weihl. Atomic data abstractions ina distributed collaborative editing system. In Proceedings of the ThirteenthSymposium on Principles of Programming Languages. ACM, January 1986.[HL82] M. Herlihy and B. Liskov. A value transmission method for abstract datatypes. Transactions on Programming Languages and Systems, 4(4):527{551,October 1982.[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-munications of the ACM, 17(10):549{557, October 1974.[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications of theACM, 21(8):666{677, August 1978.[JJD+79] A. K. Jones, R. J. Chansler Jr., I. Durham, K. Schwans, and S. R. Vegdahl.StarOS, a multiprocessor operating system for the support of task forces. InProceedings of the Seventh ACM Symposium on Operating System Principles,pages 117{127. ACM, December 1979.[JR86] Michael B. Jones and Richard F. Rashid. Mach and matchmaker: Kernel andlanguage support for object-oriented distributed systems. In Proceedings of theFirst ACM Conference on Object-Oriented Programming Systems, Languagesand Applications, pages 67{77. ACM, September 1986.[Jul87] Eric Jul. Object Mobility in Emerald. PhD thesis, Department of ComputerScience, University of Washington, Seattle, Washington, 1987. In preparation.

106[LAB+79] Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Scha�ert,Bob Scheier, and Alan Snyder. CLU reference manual. Technical ReportMIT/LCS/TR-225, Massachusetts Institute of Technology, Laboratory forComputer Science, October 1979.[Lev84] Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bedford,MA, 1984.[LGFR82] Keith A. Lantz, Klaus D. Gradischnig, Jerome A. Feldman, and Richard F.Rashid. Rochester's intelligent gateway. IEEE Computer, 15(10):54{68, Oc-tober 1982.[LH85] Mark R. La� and Brent Hailpern. Sw 2 - an object-based programming en-vironment. In SIGPLAN 85 Symposium on Language Issues in ProgrammingEnvironments, pages 1{11. ACM, July 1985.[LHL+77] B. Lampson, J. Horning, R. London, J. Mitchell, and G. Popek. Report onthe programming language EUCLID. SIGPLAN Notices, 112(2), 1977.[Lis84] Barbara Liskov. Overview of the argus language and system. Program-ming Methodology Group Memo 40, M.I.T. Laboratory for Computer Science,February 1984.[LSAS77] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Scha�ert. Ab-straction mechanisms in CLU. Communications of the ACM, 20(8):564{576,August 1977.[May83] D. May. OCCAM. ACM SIGPLAN Notices, 18(4):69{79, April 1983.[MMS79] James G. Mitchell, William Maybury, and Richard Sweet. Mesa languagemanual. Technical Report CSL-79-3, Xerox Palo Alto Research Center, April1979.[Nel81] Bruce Jay Nelson. Remote procedure call. Technical Report CSL-81-9, XeroxPalo Alto Research Center, May 1981.[PM83] Michael L. Powell and Barton P. Miller. Process migration in DEMOS/MP. InProceedings of the Ninth ACM Symposium on Operating Systems Principles,pages 110{119. ACM, October 1983.[Pu86] Calton Pu. Replication and Nested Transactions in the Eden Distributed Sys-tem. PhD thesis, Department of Computer Science, University of Washington,Seattle, Washington, August 1986. Also Technical Report 86-08-02, Depart-ment of Computer Science, University of Washington.[Ras86] Richard F. Rashid. From RIG to Accent to Mach: The evolution of a networkoperating system. Computer Science Department, Carnegie-Mellon Univer-sity, May 1986.[RR81] Richard F. Rashid and George G. Robertson. Accent: A communicationoriented network operating systems kernel. In Proceedings of the Eighth ACMSymposium on Operating Systems Principles, pages 64{75. ACM, October1981.

107[Sco86] Michael L. Scott. The interface between distributed operating system andhigh-level programming language. In Proceedings of the 1986 InternationalConference on Paralled Processing, St. Charles, IL, August 1986.[SCW85] Craig Scha�ert, Topher Cooper, and Carrie Wilpolt. Owl reference man-ual. Technical report, Eastern Research Lab, Digital Equipment Corporation,Hudson, Massachusetts, February 1985.[SH84] Robert Strom and Nagui Halim. A new programming methodology for long-lived software systems. IBM Journal of Reserach and Development, 28(1):52{59, January 1984.[Spa86] Eugene H. Spa�ord. Kernel Structures for a Distributed Operating System.PhD thesis, School of Information and Computer Science, Georgia Instituteof Technology, May 1986. Also Georgia Institute of Technology TechnicalReport GIT-ICS-86/16.[SSS81] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An automatictechnique for selection of data representations in SETL programs. ACMTransactions on Programming Languages and Systems, 3(2):126{143, April1981.[Sut63] Ivan E. Sutherland. Sketchpad: A man-machine graphical communicationsystem. In Proceedings of the Spring Joint Computer Conference, pages 329{346, Detroit, Michigan, May 1963.[SY83] Robert E. Strom and Shaula Yemini. NIL: An integrated language and sys-tem for distributed programming. In Proceedings of the SIGPLAN '83 Sym-posium on Programming Language Issues in Software Systems, pages 73{82,San Francisco, CA, June 1983. ACM. Also SIGPLAN Notices, 18:6, June1983.[TvR85] Andrew S. Tanenbaum and Robbert van Renesse. Distributed operating sys-tems. Computing Surveys, 17(4):419{470, December 1985.[WCC+74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pol-lack. Hydra: The kernel of a multiprocessor operating system. Communica-tions of the ACM, 17(6):337{345, June 1974.[Wir77] NiklausWirth. Modula: A language for modular multiprogramming. Software| Practice and Experience, 7:3{35, 1977.[WLS76] William A. Wulf, Ralph L. London, and Mary Shaw. An introduction to theconstruction and veri�cation of Alphard programs. IEEE Transactions onSoftware Engineering, SE-2(4):253{264, December 1976.

