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Emerald is a strongly-typed object-oriented language designed for programming distributed applications. Among other
things, it provides abstract typing, type conformity, and complete separation of typing from implementation. While
Emerald supports type inheritance, it does not support behaviour sharing among objects for simplifying distribution. To
increase Emerald’s utility in general-purpose programming, some support for software re-use is needed. Our research
reveals that inheritance-based techniques commonly used in other object-oriented systems for obtaining re-use are
inappropriate for Emerald. As an alternative to traditional inheritance, a compositional model, in which objects are
composed from simpler entities, is proposed, outlined and analysed in this paper.
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1. INTRODUCTION

This paper discusses our research into promoting
software re-use in Emerald, a strongly-typed, object-
oriented programming language for concurrent, distri-
buted programming.®® Emerald is unusual in that it
supports type inheritance but not implementation in-
heritance. To permit implementation sharing*, we pro-
pose a compositional model, in which objects are
composed from simpler entities, and use this model to
extend Emerald. This compositional approach to reuse
is evaluated and compared with primarily inheritance-
based techniques used in other object-oriented languages.

Emerald is intended to support the development of
software for use in multi-user, distributed environ-
ments,'® and not to be a prototyping language such as
Smalltalk.® Although originally designed for distributed
applications, Emerald is a general-purpose programming
language. It is different from most other object-oriented
languages in that it wunbundles the several functions
performed by classes in Smalltalk-like languages :® objects
are classified by abstract types, types (which are interface
specifications) are organized into a hierarchy by type
conformity, and objects are created using object con-
structors. These features enable Emerald to support
object encapsulation, subtyping, and complete separation
of typing from implementation, and yet provide much of
the flexibility wusually associated with untyped
languages.?

Making software truly soft, i.e. reusable in either an
enhanced or modified form, is important because the
process of adding features to a system not originally
anticipated by the designers accounts for at least 40 % of
the total software life-cycle costs.?' Thus, the design of
systems that facilitate the wse and reuse of software,
both elegantly and efficiently, has become exigent, with
several approaches having been proposed in the litera-
ture.> 28

Techniques used to provide software reuse in pro-
gramming languages have included the use of procedures,
modules, generic and polymorphic entities, and the use
of class-based inheritance (as in Smalltalk and C+ +2°
or prototype-based delegation®* in object-oriented

* Sharing implementation and behaviour are generally viewed as
synonymous in this paper, i.e. we are concerned more with the
conceptual sharing of implementation than with actual physical sharing
of code.

systems. This paper views both delegation and inheritance
as mechanisms for sharing implementation, and uses the
term inheritance, unless qualified, to refer to imple-
mentation sharing by two or more objects.

For reusability, Emerald provides the constructs of
operations and objects, and supports both genericity and
polymorphism using parameterised object creation. What
it does not support extensively is the reuse of im-
plementation, i.e. the use of the same implementation in
different objects. Thus, Emerald lacks ‘implementation’
inheritance but supports ‘type’ inheritance via type
conformity.

It will be shown in Section 1.3 that implementation
inheritance and its variants are found to be inadequate
for application to Emerald. Our research into alternative
techniques resulted in the following two-part solution:
first, Emerald is extended using a compositional model
that requires the creation of reusable units called
components; second, a programming environment is
provided to support reusability. The new system, called
Jade, treats Emerald entities such as operations, objects
and types as components, and provides mechanisms in
both the programming language and the environment to
compose components together to create larger com-
ponents.

The rest of this section overviews the Emerald object
constructor, outlines our specific goals, and discusses
why we consider traditional inheritance-based techniques
to be unsuitable for Emerald. Section 2 introduces the
compositional model being used to promote software re-
use in Emerald, presents examples of its usage, and
overviews the Jade programming environment being
prototyped. In Section 4, we evaluate Jade’s support for
reuse, comparing it with other models that have been
used in the past. Finally, Section 5 comments on the
current status of our research.

1.1. The Emerald object constructor

To make this paper self-contained, we present an
overview of the Emerald object constructor, glossing
over peculiarities of the Emerald language. The rationale
for Emerald’s design is described by Hutchinson and
Jul," ™ and a complete description is available in the
language report.!2
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object aPoint
export setXY, getXY
var x, y: Coordinate
operation set XY [newX: Coordinate, newY : Coordinate)
X < newX
y<newY
end setXY
operation getXY —[newX: Coordinate, newY: Coor-
dinate]
newX < x
newY <y
end getXY
end aPoint

Figure 1. An object constructor expression that creates a point
object.

Objects are created using the object constructor, an
Emerald expression that, when evaluated, creates a new
object. This expressions defines the object’s repres-
entation and its public and private operations. The
object constructor has the following syntax:

object aConstructorName

export public operation names

% private state declarations

% private and public operation declarations
end aConstructorName

Figure 1 shows an object constructor that can be used
to create a point object. The constructor, aPoint, when
evaluated creates an object, whose public operations are
setXY and getX'Y, and whose private state consists of x
and y, which reference objects of type Coordinate. Note
that we have ignored the concurrency aspects of Emerald
to keep our examples small; Emerald objects actually use
a Hoare-style monitor to regulate concurrent access to
their private state.

The constructor aPoint being an Emerald expression
can be assigned to a variable or used in another
expression. For example, in the following sequence of
statements:

var p: PointType
P
object aPoint

% as in Figure 1
end aPoint

the identifier p is assigned the object created by the
constructor expression aPoint.

In the above example, aPoint creates only one object.
However, it can in general be placed in a context where it
is used repeatedly, e.g. the body of a loop or the result of
an operation. Figure 2 illustrates how object constructors
may be used to create a class-like (from the object
creation viewpoint) object that creates new points.
PointCreator references an object, created by the object
constructor PC, that exports the operation new. When
this object is invoked, the body of new gets executed, and
constructor aPoint gets evaluated, thus resulting in the
creation of a new point. The following sequence of
statements illustrates how a new point r is created, and is
then assigned the point (10, 40).

r < PointCreator . new
r.setXY [10, 40]

const PointCreator <
object PC
export new
const PointType <
type PT
operation setX'Y [Coordinate, Coordinate)
operation getX'Y - [Coordinate, Coordinate]
end PT
operation new — [a: PointType]
a <
object aPoint
% as in Figure 1
end aPoint
end new
end PC

Figure 2. A class-like object using an object constructor.

Recapitulating, the object constructor is a language
mechanism for specifying the implementation of an
object. While an object constructor creates one object, it
can be nested in loops or used within operations to create
many objects, and can be used to build traditional
classes. Since objects can be constructed with the same
external interface (type) using different object con-
structors, multiple implementations of the same abstract
type are supported. Locality of definition is maintained
because all intra-object entities are defined within the
same object constructor. The notion of type conformity,
which subsumes subtyping, leads to a type hierarchy that
determines when one object may be used in place of
another. Finally, all this flexibility is obtained in a
compile-time type-checked language.

1.2. Re-use in Emerald

A general discussion of software reusability is beyond
the scope of this paper: an introduction may be found
in some recent issues of JEEE Software.?® We focus only
on those technical aspects of reuse that we are interested
in providing in Emerald. To make the reuse of software
components a reality in Emerald, it must become cost-
effective to:

(1) Create reusable components. The design of re-
usable components is difficult: first, component
correctness becomes more critical since errors are
replicated whenever a component is reused;
second, components must be understandable, i.e.
well-written and well-documented; third, com-
ponents must be easily adaptable for different
uses, either in original or in modified form.

(2) Find existing components. Components must be
organized ‘properly’ so that they can be rapidly
found when needed by the programmer to help in
their reuse.

(3) Share components among different users. To truly
facilitate reuse, it must be possible for several
programmers to co-operate by sharing software
components. Suitable sharing policies need to be
established by the co-operating users to derive the
most from such a shared environment. Sharing is
aggravated when users are working in a distributed
programming environment.

Johnson and Foote point out: ‘software reuse does

not happen by accident...system designers must plan to
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reuse old components and must look for new reusable
components... the keys to successful software reuse are
attitude, tools, and techniques’.® While programmer
attitudes are not quite within the control of the
programming language/environment designer, it is ob-
vious that an easy-to-use programming system can go a
long way in proselytising programmers to reusability.
Tools must be provided by the programming environ-
ment to support goals 2 and 3 above, and also to help in
achieving goal 1.

Our major concern was that extensions made for
providing implementation reuse should not violate
Emerald’s fundamental features:

e support for abstract typing,

e the notion of type conformity,

e the locality of object definition,

e the separation of implementation from typing, and
e compile-time type-checking

We also wanted to minimize the changes made to the
Emerald language, and to retain backward compatibility
if possible.

We strongly believe that the issues of implementation
reuse and abstract typing are, and should be, kept
orthogonal, i.e.

e implementations are used to compose objects, and
e dynamic interaction between objects is governed by
their type.

These two aspects of programming are disjoint by their
very nature, and attempts to link the two are in-
appropriate, as we explain next.

1.3. Problems with inheritance

Our evaluation of inheritance in several languages,
including Simula-67,> Smalltalk, Trellis/Owl,* C+ +,
BETA,'8 SELF®! and Eiffel,* revealed that several properties
of inheritance are inappropriate for extending Emerald.
These problems may be broadly classified as (a) those
generally applicable to most systems, and (b) those
specifically applicable to Emerald. We summarize these
problems heré, and as noted below, some of them have
been previously discussed in the literature.

(1) Encapsulation is violated. Inheritance may violate
encapsulation in at least three ways: a subclass
may (a) refer to an instance variable in the
superclass, (b) call a private operation of its
superclass, and (c) refer to superclasses of its
superclasses.?®

(2) Class organization is insufficient. Since classes do
not provide the support for finding methods (and
other classes), object-oriented systems need to
provide cross-referencing and other organizing
tools to locate entities ‘out of turn’, i.e. outside of
the class hierarchy.

(3) Multiple inheritance is problematic. The need for
multiple inheritance usually indicates that simple
class organization is inadequate for the application
at hand. Additionally, there are problems associ-
ated with understanding and implementing in-
heritance.?

(4) There is little support for 1S-PART-OF hierarchies.
Inheritance does not provide support for the
notion of components, that is, for IS-PART-OF

hierarchies. Blake and Cook discuss the usefulness
of such hierarchies and show how they may be
implemented in Smalltalk.” Attempts to address
this problem have also been made in VULCAN,'®
and in object-oriented databases.’

(5) Classes are not automatically reusable. For suc-
cessful reuse, inheritance requires the use of a set
of coding rules?® and a set of design rules.'

(6) Re-use via inheritance is not scalable. Inheritance is
successful in environments where the software is
written by few people and the number of classes is
in the hundreds at most. We believe that software
reuse only through inheritance is not scalable.

(7) Versioning is difficult. Since inheritance is implicit,
it is difficult to determine which version of a
superclass will actually be used.

(8) Supporting distribution could be difficult. When
objects can be mutated and distributed, inheritance
imposes substantial difficulties as demonstrated in
Distributed Smalltalk.!

(9) Supporting multiple users is difficult. Inheritance
works best in single-user systems. Where there are
multiple users, successful co-operative use of
inheritance is more a matter of policy than of
language design.

Although the problems mentioned below are ‘uni-
versal’ they become more noticeable when inheritance is
applied to the Emerald language ; of course, the problems
mentioned above also affect reuse in Emerald.

(1) Locality is lost. Inheritance introduces object
dependence on ‘unknown’ inherited operations
(and variables), thus violating the Emerald em-
phasis on locality of object definition and con-
struction.

(2) There should be no linkage between typing and
implementation. Emerald’s extensive support for
multiple implications of the same abstract type is
violated if abstract types are also used as a basis
for inheritance (see Section 4.2).

2. THE COMPOSITIONAL MODEL

As an alternative to traditional inheritance, we have
developed a compositional approach to software reuse
in Emerald. This section presents the compositional
model used in Jade, first intuitively and then more
concretely with several programming examples. Fol-
lowing this, we discuss how composition affects pro-
gramming style, contrasting it with the style used in more
traditional object-oriented systems.

2.1. Intuition

The model for construction used in the children’s
educational toy, LEGO™, provides a reasonable analogue
of our model. LEGO provides children with a basic set of
building blocks, which can be put together to form more
complex objects. The restriction placed on composition
is that only matching blocks can be fitted into one
another, i.e. the depressions in one block must match the
projections in the other. As composed entities become
larger, matching becomes more difficult because there
are fewer ways of combining large composite blocks
together.

The notion of components is quite often used in the
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construction of many hardware systems, where interfaces
between modules are clearly defined so that one module
may be replaced by another. This idea has been extended
and used in programming languages such as Modula-2 or
Emerald at the module (object) level, where one module
(object) may replace another only if their specifications
match, i.e. they have the same type.

In the Jade compositional model, software components
are analogous to LEGO pieces, and the compositional
interface analogous to the notion of matching. The
compositional interface permits appropriate components
to fit together, leading to larger components. The
compositional interface between software components is
different from the invocation interface used to regulate
messages between objects. What makes the Jade model
different from standard LEGO is that the player or
programmer gets to design his own pieces and to reuse
(by re-creating) existing pieces as often as needed.

We complete this intuitive introduction to Jade by
presenting some simple programming examples.

Composing a stack

Fig. 3 illustrates the compositional model by explain-
ing how a stack object, aStack, is composed from simpler
components. At this stage, we keep our discussion high-
level and defer low-level details to Section 2.2. The
different components needed here are shown in Figure
3(a):

e store, which names an implementation,
anlntegerArray, used to store the various stack

elements.
c anlinteger c
count
aPush aPop

@

S anintegerArray S

]

push pop

(a) Components needed for a stack

store ;-— l

e count, which names an impiementation, an Integer,
used to keep count of the stack elemeinis.

e push, which names an operation, aPush, used to push
its argument onto the stack, and

e pop, which names an operation, aPop, used to
remove and return the topmost stack element.

Fig. 3(b) shows how these components can be
combined to form a stack object; when the components
are placed together, the vacancies ¢ and s in aPush and
aPop are occupied by count and store respectively, thus
resulting in a complete Emerald object that understands
invocations push and pop, which are handled by the
implementations aPush and aPop respectively.

Composing a queue

Our notion of component is useful for reuse because
each component, as in Fig. 3, completely describes itself:
even aPop and aPush describe themselves, although in
terms of the vacancies ¢ and 5. In other words, it is
possible to reuse components in different contexts, as
long as all vacancies are filled appropriately. For example,
we can create a queue object, aQueue, by defining a new
component aRemove and reusing three of the previously
defined components (see Fig. 4).

The programmer composing an object may choose
components to have names that are different from those
used for the actual implementation. This permits greater
flexibility in naming abstractions appropriately; for
example, the aQueue object calls its components insert

and remove.

aPush

anintegerArray

-1 push ™ pop

(b) The composed stack

Figure 3. Object composition in Jade.

c c anlnteger
count
aPush , aRemove aPush aRemove
S anlntegerArray S anlntegerArray
I L | I
insert srore remove insert L) remove A

(a) Reusing some old components with a new aRemove

.

(h) The composed queue

Figure 4. Reusing components in Jade.
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2.2. A preview of Jade

Our earlier discussion indicates that the compositional
model is conceptually simple. Informally, composition
involves only the following concepts:

(1) The component is the basic reusable unit in Jade,
and is a completely self-defined entity. Com-
ponents are first-class entities in Jade and define
Emerald entities such as objects, operations and
types.

(2) The compositional interface has two aspects: (1)
the habitat, which is defined as a signature
specifying the formal names of other components
that must be provided to state external depen-
dencies, and (2) the use construct, which instan-
tiates a new copy of a component with its habitat
completely provided. These two extensions are the
only additions made to the Emerald language.

(3) Composers are the mechanisms for combining
simpler components to form larger components.
Such mechanisms are provided both in the
language and in the environment; the former is
discussed in this section, and the latter in Section
3.

Fig. 5 displays the Jade source for component
aPush, intuitively described in Fig. 3, and a typical
example of its usage. Component aPush has two parts,
the habitat in which it must exist, and the Emerald
source code for an operation. The use expression creates
a new copy of aPush, with its habitat names, s and c,
instantiated as store and count respectively.

habitat [

operation aPush [x: Integer] -> []
s.AddUpper [x]
cecCc+1

end aPush

var s: IntegerArray, % store for the elements
var c: Integer] % count of the elements

The stack example of Fig. 3 can now be completed as
shown in Fig. 6. As expected, the four main components,
aPush, aPop, anlnteger, and anlntegerArrayt, are re-
spectively named by push, pop, store, and count. The first
two components are Emerald operations and the other
two are full-fledged Emerald objects. Notice how the
names store and count are matched with the habitats of
the two operations. This correspondence between the
habitat signature and the actual names is analogous to
formal parameters being matched with actual parameters
in an invocation, but this takes place at component
creation time. Fig. 7 displays a simple Jade component
that can be instantiated to demonstrate the usage of the
stack.

2.3. More about the Jade component

Jade components cover the spectrum from small entities
such as Emerald operations to large entities such as full-
fledged Emerald objects. Fine-grained reusability is
needed to support the differential nature of programming
that inheritance is convenient for, while coarse granu-
larity provides generic Jade components that can be
instantiated easily as complete Emerald objects.

The Jade source code of a component defines the
implementation of Emerald entities such as objects or
operations. In conjunction with the use expression, this

t Since Jade permits multiple implementations of any abstraction,
we use names such as aPop, aStack and anExtendedStack to refer to
specific implementations.

operation push [Integer] -> []
: <- use aPush [store, count]

Figure 5. A Jade component and its usage.

object aStack
export push, pop
var store : IntegerArray
<- IntegerArray.create[0]
var count: Integer <- 0

operation push [x: Integer] -> []
<- use aPush [store, countl

operation pop [] -> [x: Integer]
<- use aPop [store, count]
end astack

habitat [
var s: IntegerArray,
var c: Integer]

operation aPop [x: Integer] -> []
X <- s.RemoveUpper
c<-c-1

end aPop

Figure 6. Object aStack, with component aPop.
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object astackUser
process
var x: Integer
const myStack <- use aStack
myStack.push[5]

X <- myStack.popl]

stdout.PutString[*Popped number <- " || x.asString "\n"]

end process
end aStackUser

Figure 7. Using aStack.

code forms an extension of the Emerald object con-
structor. It is a component constructor that creates
components, both objects and intra-object entities such
as operations and functions. There are several viewpoints
that one can have about the Jade notion of component:

e A component has the same functionality as a class in
class-based languages for the purpose of creating
instances. Note that component constructors, in
addition to creating objects, also create operations,
functions and types. Of course constructors are not
really invoked so they are not really classes.

e A component such as aStack may also be regarded as
a prototype, with the use construct regarded as a
cloning mechanism. The use expression does result in
an identical copy (either of the source code or of
some pre-compiled form) of the component defini-
tion. This is different from the cloning mechanism in
SELF, where objects are replicated along with their
run-time state.

e We can also regard components with habitats to be a
higher-level language variant of an assembly language
macro, but these components are type-checked for
conformity. This kind of parameterisation is also
similar to that of parameterised classes in Eiffel.

o The use construct can also be viewed as an ‘include’
mechanism that ensures that the compiler includes
the definition of the Jade component much the same
way that the C pre-processor incorporates program
files. However, use is a language construct that
provides parameterisation, and may support the
inclusion of pre-compiled code rather than just the
source text.

We use compile-time instantiation for the use expression
in Jade; instantiation at run-time or at invocation-time
are other possibilities that are viable and have interesting
consequences.

2.4. Composition versus inheritance

The Jade composition paradigm can be contrasted with
the inheritance paradigm used in other object-oriented
languages. In inheritance-based systems, classes tend to
be reasonably big, with inheritance used to create new
classes that are nearly the same, but have been extended
by additional or alternative methods. Such support for
variational/extensional/differential programming has

made inheritance popular among many programmers. In
contrast, Jade components are both small and large. The
programming style used here is one of collecting a set of
components, and using them to make a larger component.
Support for differential programming can only be realised
if the components used are fine-grained, i.e. the size of
Smalltalk methods.

The support for extensional and differential pro-
gramming in Jade comes from both the language and the
environment. At the abstraction level, the old Emerald
language provides the support needed for extensional or
differential programming via its type hierarchy. The Jade
environment provides similar support at the implemen-
tation level, but its compositional approach makes it
considerably different from that of inheritance.

Jade provides primarily two ways of creating exten-
sions. For example, let us consider an extension of
aStack that has an additional operation, anEmpty, that
merely checks the stack for emptiness. The first way of
creating this new stack, an ExtendedStack, is by
examining the aStack implementation, adding the new
component, anEmpty, and making other suitable changes
(see Fig. 8). The second way of creating an extension is
by using Jade to create anExtendedStack by simply
adding component anEmpty to Stack; the Jade en-
vironment takes care of the details.

These techniques for creating extensions are different
from simple editing of implementations to create new
objects because the environment retains the relationship
between the components. For example, the fact that
components aPush and aPop are used both by aStack
and anExtendedStack is known both to the programmer
and system. Any changes made to a component can be
reported toits clients (or rather, the clients’ programmers)
for suitable action. When implementations are merely
edited to create extensions, such relationships between
‘shared’ components are not retained.

Variants of the stack can also be designed. Fig. 9,
based on the intuition outlined in Section 2.1, shows how
the components of the stack can be reused. To obtain
aQueue from the implementation of aStack, all that
needs to be done is to subtract component aPush and add
component aRemove.

As seen above, using habitats provides the ability to
define new objects using simple set operations such as
union and difference. What is interesting is that several
of these operations can be automated (as opposed to
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anExtendedStack

object anExtendedStack
export push, pop, empty
var store: IntegerArray
<- IntegerArray.createl0]
var count: Integer
<-0
operation push [Iinteger] -> []
<- use aPush [store, count]
operation pop: []1 -> [Integer]
<- use aPop [store, count]
function empty []1 -> [Boolean]
<- use anEmpty [count]
end anExtendedStack

habitat [
var c: Integer]
function anEmpty [] -> [r: Boolean]
r<-c=0
end anEmpty

Figure 8. An extended stack.

aQueue v
object aQueue
export insert, remove
var store: IntegerArray
<- IntegerArray.create[0]
var count: Integer
<-0

operation insert [Integer] -> (]
<- use aPush [store, count]
operation remove []1 -> [Boolean]
<- use aRemove [store, count]
end aQueue

akemove]
habitat [
var s: IntegerArray,
var c: Integer]
operation aRemove [x: Integer] -> []
X « s.Removelower
cec-1
end aRemove

Figure 9. Object aQueue and component aRemove.

habitat [
' var stackType: AbstractType]
object aGenericStack
export push, pop
var store: Array.of{stackType]
<— Array.of{stackTypel.create [0]
var count: stackType
<-0
operation push [stackType] -> []
<~ use aPush [store, count]
operation pop: [] -> [stackTypel
<- use aPop [store, count]
end aGenericStack

% Uses Emerald definition

% Uses Emerald definition

const Intstack <-
use aGenericStack (Integer]

const strstack <-

use aGenericStack [String]

Figure 10. A generic stack and its instantiation.

explicit text-editing by the programmer) ; we are presently
exploring the provision of such operations in the Jade
environment. '

For a final example, consider thecomponent presented
in Fig. 10. Here, we use the expressive power of the
habitat construct to create generic entities that can be
instantiated by the use statement : this demonstrates that
Jade also provides parameterised ‘classes’ in addition to
operations and types.

3. THE JADE PROGRAMMING
ENVIRONMENT

While the Jade compositional model provides com-
ponents that are easy to reuse, actual reuse can take
place only when existing components are easily accessible
by users in a possibly distributed system. The Jade
programming environment is designed to support this
major aspect of reuse, and to supplement the com-
positional model by helping to make components more
understandable.
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To support all aspects of code management, Jade
needs tools that assist users in browsing, modifying,
compiling, executing and debugging Jade code. Since
Jade is still being implemented, we only present the
flavour of its environment. The major goal of the current
prototype of Jade is to provide a test-bed for experi-
menting with, and refining our ideas.

3.1. Finding components

The realization that programmers need to find existing
components by a variety of techniques depending on
varying factors (such as familiarity with the system,
programmer background and current requirements) is
made explicit in Jade, with components being accessible
via a combination of the following:

e categories. These are convenient groupings of com-
ponents, for example, all components used in a
payroll application could be kept in a category. More
typically, as in Smalltalk, categories are used to keep
a collection of related components (classes) together.
In Jade, the designer of a component is requested to
place it in as many categories as are regarded
appropriate. For example, the aStack component
could be entered under Data Structures and/or
Repository Objects. The placement of components in
multiple categories makes it different from Smalltalk,
where each class belongs to only one category, and
each method to only one protocol.

e synonyms. These are alternative names used by
programmers to access components. Quite often, one
programmer’s use of a term may correspond to
another programmer’s use of a synonymous term.
How often have we seen identical operations named
delete or remove or extract! We assume that
programmers will cooperate and use sensible names.
The environment also requires them to provide
alternative names for entry into a thesaurus-like
structure to help in finding components later.

CSci3?3 Browser

aPop

aPush

aQueue
aReadOnlyFile

e role. This refers to the role played by the component,
i.e. is it an operation or a function or an
object or a type? By permitting access via
component functionality, Jade helps the programmer
concentrate on only those entities that are of concern.

e conformity. The expressive power of type conformity
has been discussed in the Emerald papers cited
earlier. Conformity of implementations, i.e., the types
of the implementations, makes it possible to know
what other objects may be used in place of a given
component. Note that this is possible because
Emerald supports a pure typing hierarchy with
multiple co-existing implementations for the same
type. Of course, the lack of an explicit connection
between implementation and type makes the listing
of the type hierarchy more difficult in Jade than, for
example, in Trellis/Owl.

e clients. These are a collection of components that
make use of a given component. Providing rapid
access to the clients of a component helps as follows:
first, it permits a programmer to examine the
component’s typical usage and devise new uses for it;
second, it allows the programmer contemplating
changes to know what updates could affect other
users.

e sub-components. Here, known components are
accessed as the first step to access their sub-
components. For instance, in our aQueue example,
we were able to reuse the sub-component aPush of
the aStack because we knew that the aStack was
similar to the aQueue we were planning on creating.

3.2. Browsers

Central to the Jade environment is the notion of a
component library, which may be regarded as a collection
of components that is organized for supporting reuse.
Every Jade component is stored in a library so that it can
be reused later.

External Files
Internal Files
Miscellaneous
Operating Systems

hab

operation pop [] -> [Integer]
operation push [integer] -> (1]
operation aPeek [] -> [x: Integer]
X <- self.pop
self.pushix]
end aPeek

Save | Parse | Compile | Execute | Template | New

Figure 11. The Jade browser.
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Jade has browsers that provide rapid access to
components in libraries. A programmer opens a browser
onalibrary for examination and can view the components
in it, accessing them using their categories, synonyms
and functionality. Figure 11 shows a browser that has
been used to examine the contents of a library designed
for use in an undergraduate data structures course.
Categories are used analogous to their use in Smalltalk
to access needed components. Synonyms are used to
browse through components the same way that a
thesaurus is used to find a suitable synonym. For
example, we can search for the component aPush by
starting with the entry inser in the thesaurus, and finding
the various components that match until the one sought
is found.

There are several ways of cross-referencing infor-
mation about components. When examining a com-
ponent, pop-up menus are used to help in finding other
components that are clients and sub-components of the
one being examined. Additionally, when the component
being examined is a full-fledged Emerald object, the pop-
up menus also help in listing those Emerald object
implementations whose type conforms to that of the
object being examined, and vice versa.

Displayed components can be viewed and modified,
and when changes are to be recorded, the system can be
requested to record the changes. Text-editing support
comes directly from the underlying Smalltalk text-editor,
and we hope to use all the support we can get from the
underlying Smalltalk system.

Libraries provide the basis that can be used to obtain
sharing of software among multiple users in the system.
To provide effective reuse in a distributed system with
‘co-operating’ multiple users, setting up proper organiz-
ational policies for design and use is important to
supplement Jade’s concrete support for reuse. That the
Smalltalk community practices reuse successfully owes
much to the attitude and self-discipline that Smalltalk
programmers have toward reusability: they make a
concerted effort to write reusable code.

3.3. Other tools

As stated earlier, the primary goal of this research, and
of the current Jade prototype, is to examine the
compositional model from the reuse perspective. How-
ever, to make Jade a truly interactive programming
environment, Jade would need to support incremental
compilation and provide extensive debugging capabili-
ties. These goals, important in their own right, are not
the focus of the current research.

4. DISCUSSION

This section discusses several of the issues that influenced
the design of Jade, placing our approach in perspective
by comparing it with others taken earlier and elsewhere.

4.1. If not composition?

To obtain implementation reuse in Emerald, what other
alternatives could we have used? Of the several
approaches that we have examined are the following that
appear obvious:

e Using an object-constructor hierarchy. A simple
alternative would have been to extend the func-
tionality of the Emerald object constructor to provide
implementation reuse via object constructor
hierarchy, e.g. by the use of a ‘sub’ object constructor
that parallels the C+ + (derived) subclass. Such a
mechanism would be useful because it is almost
directly applicable to the Emerald object constructor,
and the concept of an implementation hierarchy is
well-understood. Unfortunately, this does not solve
most of the problems mentioned in Section 1.3.

e Eliminating object-constructors. Another simple
alternative would have been to get rid of object
constructors altogether, and use the popular notions
of either class or prototype for object creation:

— Using classes. Since Emerald obtains its expres-
siveness from abstract typing, this would have
meant supporting two hierarchies, one for typing
and the other for implementations. This approach
has been used by Lunau to create Duo-Talk, an
extension of Smalltalk that has these two distinct
hierarchies.?® We found this alternative unsatis-
factory for the same reasons we found the object
constructor hierarchy unacceptable.

— Using prototypes. We also considered the use of
prototypes,® ** for object creation, and using del-
egation for sharing behaviour. Unfortunately, the
notion of prototype is significantly different from
that of the Emerald object, and making this change
would have meant a substantial redesign of
Emerald. Moreover, since delegation also does not
address several of the inheritance problems (see
Section 1.3) such as violation of locality and
encapsulation, we did not pursue this idea further.

The alternatives discussed above adversely affect
features of Emerald we considered to be inviolable. We
therefore conclude that the Jade compositional model to
be a useful, or perhaps the only, approach to reuse in
Emerald.

4.2. Separation of implementation from typing

Emerald separates implementation from typing, thus
allowing multiple implementations of the same type to
co-exist and to be used alternatively as desired in an
executing system. We did not want any extension to
permit implementation reuse to alter this fundamental
feature of Emerald. Therefore, Jade treats the reuse
issue as completely in the domain of implementations.

We claim that this uncoupling of typing from
implementation is the proper approach to take. Liskov
has also commented that the use of inheritance to
support two different things: to implement a type and to
indicate that one type is a subtype of another leads to
problems with multiple implementations.??

Jade provides a different approach to reuse: imple-
mentations are reused by composition, and objects are
used by abstract typing. Thus, Jade preserves separation
of typing and implementation, but still permits reuse.
This however necessitates a different style of program-
ming in Jade, but as seen in Section 2.4, its expressive
power is comparable to that of Smalltalk or C+ +.
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4.3. The use of habitats

To our knowledge, the only other programming lan-
guages that support something similar to our use of the
habitat are Euclid'® and its descendants, Concurrent
Euclid"® and the Eden Programming Language.* Euclid
was designed as a language for developing verifiable
systems software, and thus includes several constructs
that not only aid in verification, but also increase
reliability and understandability.

In these languages, scope is controlled by preventing
automatic access to global names; explicit specification
of names in import and export lists is required, thus
controlling the availability of global names. Procedures,
functions, modules and monitors have to specify in the
import list any dependencies on all externally declared
entities such as names of global variables, other
procedures and functions, and other modules. Addition-
ally, variables and modules need to be imported as var
when they are subject to modification within the scope of
the importing entity.

The price paid for the usage of habitats is that
programs sometimes become harder to write and
generally become verbose. However, habitats provide
better detection of errors for both the programmer and
the compiler, and thence to more reliable software. Thus,
by enforcing controlled access to non-local names,
habitats can help Jade programmers write software
whose quality can be easily assured.

The parameterisation of these external dependencies
in the habitat attribute provides several benefits. It
avoids having to deal with the global name space for
understanding the names used locally. Parameterisation
offers greater flexibility by both permitting and enforcing
renaming and typing within each scope. It also makes
each component inherently reusable since all names are
limited to the component’s own scope.

In summary, habitats provide support for genericity.
The explicit specification of external dependencies makes
it possible to detect what subcomponents may be added
or removed. Since a simple preprocessor from Jade to
Emerald can easily be constructed, there is no loss of
efficiency in the executable code produced by the Emerald
compiler. The use of habitats makes it feasible for Jade
components to be compiled incrementally. Finally, the
use of habitats also helps in reasoning about program
correctness, and compilers that automate the checking of
verifiable program can be constructed by using the
Euclid approach.

4.4. Complete locality of definition

The use of habitat in Jade also helps in achieving one of
the primary goals of this work: to retain complete
locality in object definition. For reasons mainly to do
with distribution, Emerald objects were designed so that
their behaviour is self-contained.® Our experience has
been that such locality is useful for general-purpose

programming,® particularly from the reusability view-
point. We therefore ensured that this basic feature was
not violated by the Jade compositional model.

Jade uses a ‘bottom-up’ approach to object con-
struction rather than the top-down model espoused in
most class-based systems. Everything must be explicitly
defined in a Jade component, although this can be done
in terms of other components. This helps localize each
component definition, making it easier to understand
since there are no implicitly inherited operations to
locate. The export list of operations helps in under-
standing the type of an object.

In more theoretical terms, each Jade component may
be considered to be a typed lambda expression with no
free variables. This follows because each name used is
typed within the component, that is, in the habitat, or in
argument or result lists (for operations), or simply as a
local name. The avoidance of free variables once again
means that reusability is enhanced. In the abstractly
typed world of Jade, this also leads to greater flexibility.

5. STATUS AND SUMMARY

This paper presented a compositional model as an
alternative for achieving implementation reuse in the
Emerald system. Composition of implementations, in
conjunction with an abstract type hierarchy, provides
many of the benefits of inheritance with fewer dis-
advantages.

As stated, the current version of Jade is being
prototyped in Smalltalk, which we believe still provides
the ‘best’ prototyping environment for such applications
as ours. In the next stage of our work, we expect to
complete the preliminary design and implementation of
Jade, with its support for component libraries. We plan
to experiment with different schemes for multiple-user
co-operation across the nodes of a distributed system.
This will give us an opportunity to evaluate Jade support
for scalability and usability, and permit us to propose
suitable version management schemes that can be used to
keep track of components.
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