
The Emerald System1USER'S GUIDEEric JulRajendra K. RajNorman C. HutchinsonEmerald ProjectDepartment of Computer ScienceUniversity of WashingtonSeattle, WA 98195Emerald DocumentVersion 1.3 (UW)(Revised Nov 1988)
Abstract:The Emerald Project is an on-going e�ort to demonstrate that the object-based style of programmingcan be incorporated both elegantly and e�ciently in the distributed programming environment. Aspart of this project, the Emerald language and kernel were designed and implemented. The mainobjective of this guide is to provide introductory information for users to facilitate compilation,execution and testing of programs written in Emerald.Details about installing and updating new releases of Emerald are also included for the Emeraldinstaller, and may be ignored by the typical user.1This work was supported in part by the National Science Foundation under Grants No. MCS-8004111, DCR-8420945 and CCR-8700106, by K�benhavns Universitet (the University of Copenhagen), Denmark under Grant J.nr.574-2,2, by a Digital Equipment Corporation External Research Grants, by an IBM Graduate Fellowship, and adissertation award from Microsoft Corporation.

CONTENTS 1Contents1 Getting Started 11.1 Overview : 11.2 Machines : 11.3 Directories : 21.4 Booting a kernel : 21.5 Compiling and running a program : 21.6 Builtins : 21.7 Input/Output : 31.8 Run-time Errors : 31.9 Restrictions and Peculiar Features : 32 Examples 42.1 A Simple Example : 42.2 Another Example : 63 Debugging tools 93.1 Traces : 93.1.1 Traces for information about Emerald processes : : : : : : : : : : : : : : : : : 93.1.2 Traces for kernel debugging : 103.2 Snapshots : 113.2.1 Helpful Snapshots : 113.2.2 Emerald Process Manipulation : 123.2.3 Kernel Status : 123.2.4 Statistics : 123.2.5 Kernel Data Structure Dumps : 123.2.6 Kernel Management : 133.2.7 Changing the value of kernel integer variables : : : : : : : : : : : : : : : : : : 133.2.8 Testing : 143.3 Remote Debugging : 14A Summary of Helpful Information 15A.1 Emerald Compiler : 15A.2 Debugging Tools : 16A.2.1 Tracing : 16A.2.2 Snapshots : 16A.2.3 Repetitive Snapshots : 17A.2.4 Short Cuts : 17A.2.5 The Guru : 17B Installer's Guide 18B.1 The Preliminaries : 18B.2 Making the Compiler : 19B.3 Making the Kernel : 19B.4 Testing the Installation : 20

CONTENTS 11 Getting StartedThis guide describes how to compile, run and debug Emerald programs at several installations ofEmerald. As Emerald is still an on-going project (as of Nov 1988) and is continually being revised,the reader is cautioned that this guide may be slightly out-of-date.This guide has been written for the person who has a reasonable knowledge of the Emerald pro-gramming language; this background can be obtained by reading [Raj 88]. Hutchinson's dissertation[Hutchinson 87a] provides an excellent rationale for the design and implementation of Emerald, andthe Emerald language report [Hutchinson 87b] describes its signi�cant features. The published lit-erature on Emerald includes the following articles [Black 87,Black 86,Jul 88].The rest of this section presents a general introduction to the Emerald system. Section 2 showshow simple Emerald programs can be written, compiled and executed. Although the Emeraldsystem does not have a dedicated debugger, the compiler and the kernel support tools that facilitatedebugging; these tools are discussed in Section 3. Appendix A summarizes information aboutthe commonly used Emerald utilities. Appendix B comprises a preliminary installer's guide, andprovides information about the installation of new releases of the Emerald compiler and kernel; thismay generally be ignored by Emerald users.1.1 OverviewThe Emerald system consists of a number of Ultrix programs of which the two most importantare the Emerald compiler and the Emerald kernel (henceforth merely called the compiler and thekernel). These programs run on top of Unix/Ultrix systems as normal Ultrix user programs. Thehardware base consists of one or more VAX computers connected by an Ethernet. Normally, thereis one kernel running (in the background) on each computer. Each such kernel is contained in asingle Ultrix process that stores all objects resident on that computer within its single Ultrix addressspace. Any Emerald processes executing within Emerald objects on the node are time-multiplexedby the kernel.To create and execute an Emerald program, use your favourite editor to generate the Emeraldprogram in a Ultrix text �le, with a .m su�x. Next, the program �le needs to be cross-compiledfrom the Ultrix world to create the corresponding Emerald objects by using the Emerald compiler.An easy of way doing this is to make the the compiler both produce the executable code �les andthen request the kernel to execute the produced �les; the kernel reads the code �les, performs thenecessary linking, and executes them. Alternately, the compiler may be halted after producing a .goutput �le; subsequently, the utility program, runec, can be used to pass the resulting .g �le to thekernel for execution.The compiler stores the executable code �les in a dedicated directory that is not accessed by theuser. When execution is requested (e.g., by runec), the kernel looks for the code �les in this directoryon the local machine; if not found, a network-wide search is initiated, and the corresponding directoryis searched on all other accessible Emerald machines. Thus an Emerald program may be compiledon one machine and executed on another machine. A simple input/output facility is available viathe builtin types stdin and stdout that provide simple character input and output correspondingto stdin and stdout in C/Ultrix programs.1.2 MachinesThe following machines will usually have the necessary software for running Emerald: Freja, Roarand Bjarke. Note that Freja, Roar and Bjarke are used for development, and might run a di�erent

CONTENTS 2version of Emerald than the other machines. Usually there is a kernel running on each of thesemachines; if not, follow the instructions in Section 1.4 to boot a kernel.1.3 DirectoriesThe Emerald software is kept in the Ultrix directory /usr/projects/emerald0 and the executableprograms are kept in the directory /usr/projects/emerald/bin. It is suggested that you keep thisdirectory in your Ultrix search path.1.4 Booting a kernelThe current version of the kernel is kept in /usr/projects/emerald/bin. The kernel is booted byexecuting the em command. The common practice is to redirect the kernel output to a log �le:em >& kernel.logThe kernel outputs bootup and shutdown messages and any relevant error messages to its standardoutput. Furthermore, trace messages (see Section 3.1) and user output (see Section 1.7) may alsobe written to standard output.The kernel accepts a number of parameters; of these, a few are useful to the the user, but mostare meant for kernel debugging (cf. Section 3).1.5 Compiling and running a programA program is compiled and run by:ec program.mAlternately, the program may be compiled using the -C ag which prevents the compiler fromexecuting the program immediately. Thus to compile a program for later execution, useec -C program.mThe program may be executed later by usingrunec program.gThe compiler requires an Emerald name server to be running on Freja. If the name server isnot running on Freja, then the compiler attempts to start it. This is a temporary limitation on thedistributed nature of Emerald, one that will hopefully be corrected in a future version.The compiler has a number of optional ags, for a description of them, use ec -h. Note thatthe compiler cannot produce a listing; use, e.g., cat -n program.m instead. The error messagesproduced by the compiler are generally self-explanatory.1.6 BuiltinsA number of builtin objects and types are available in the Emerald system; these include traditionaltypes such as Integer, Real, etc., and newer ones such as InStream, Node and OutStream. Adescription of these objects is beyond the scope of this guide; the reader is referred to the EmeraldLanguage Report [Hutchinson 87b].0This is the directory structure used at DIKU. See Appendix B for the directories used at other sites.

CONTENTS 31.7 Input/OutputEvery compiled object is provided with two builtin references (stdin and stdout) to i/o streams si-milar to Ultrix character i/o. These streams have already been opened and can be used immediately.The example in chapter 2 illustrates the usage of streams.When a program uses character i/o, the -i option should be used when executing it (eitherdirectly using the compiler or with runec). This option causes the compiler/runec to use its ownstandard input/output as the input/output of the program. When used, these streams must bespeci�cally closed before program termination, or the terminal will hang.When the -i option is not used, input operations on stdin return end-of-�le immediately; outputfrom stdout is piped into the standard output of the kernel that received the request to execute theprogram. It is interesting to note that this output will always be bound to the original kernel, evenwhen the actual program objects using stdin and stdout move to other machines.1.8 Run-time ErrorsA number of di�erent errors may occur at run-time. As a rule, all such error messages appear on thestandard output (or error output) of the kernel. Therefore, when things go wrong (or the programhangs), the �rst place to look is in the kernel log. If this does not help, starting both line numberand failure tracing is recommended (see Section 3.1); this can be done by:emtrace -T LineNumber -T FailureThere are several reasons why a user process may fail; these include the following:� an attempt to invoke NIL (usually caused by an uninitialised variable).� an assertion failure, e.g., assert FALSE.� an assertion failure due to index out of bounds when executing an operation on an Array orVector.� read or write operations on a closed stream, or repeated attempts to read past end-of-�le.1.9 Restrictions and Peculiar FeaturesAs stated elsewhere, Emerald is an on-going research project and is continually being improved and\�xed." Some of the present restrictions include:� the move primitive does not work correctly for remote objects; this can be avoided by movingoneself to the remote site, performing the move, and then returning oneself to the original site.� the fix, unfix and refix primitives are not implemented as of Nov 1988.� garbage collection has not been implemented as yet. So the kernel breaks when it runs outof virtual memory. In addition, the disk �lls up with old code �les (when recompiling aprogram, the old code �les are not removed). The utility program newTreeVersion can beused to remove all Emerald code �les; note that if this program is used, it will be necessary torecompile all user programs so use this utility with great care.� message forwarding sometimes does not work properly, and the status unavailable may bereturned. For highly mobile objects, a simple way of avoiding this error is to locate it beforeinvoking a highly mobile object.

CONTENTS 42 ExamplesThis section presents two examples of Emerald programs. The �rst, an extremely simple program,provides a rather detailed introduction to the Emerald kernel and compiler. The second illustratesthe interaction between the compiler and the kernel environment.2.1 A Simple ExampleFigure 1 shows a program that computes the machine precision of the builtin type Real. Let usassume that the program is stored in /usr/projects/emerald/demo/testReal.m and that no kernelis running. First, on Freja we boot a new kernel redirecting its output to a log �le.em >& kernel.log&The kernel boot should take about 5{10 seconds. We can check whether it has indeed booted or notby: snapshot -n WhatisupThis snapshot attempts to connect to the kernel, and requests the local kernel to reveal someinformation about the kernels (including itself) that are currently up and running, or dead. If thekernel has not booted properly, the Whatisup snapshot will output:snapshot: connect: Connection refusedAny boot problem will be reported in the �le kernel.log. When the kernel is fully booted, theWhatisup program outputs something like:Em36: KMD Connected to host 54Calling Whatisup on taber, param: 0 (0x00)Emerald network according to node 54 on Wed Nov 9 12:19:53 1988LNN Incarnation Physical State Last state change---51 Nov 9 11:54:21 whistler Alive Nov 9 11:54:3454 Nov 9 11:52:17 taber Alive Nov 9 11:53:1755 Nov 9 12:17:21 roskilde Alive Nov 9 12:19:39*** End of Snapshot ***Snapshot done.This output indicates that a kernel has been successfully booted on \Freja," and that its logical nodenumber (LNN) is \54"; the LNN is extracted from the tail digits of the node's Internet number.This snapshot also shows that kernels are running on machines Roskilde and Whistler.Now ensure that we are in the right directory by:cd ../demoThe program is compiled byec -v -gt -gd -gm -C testReal.mThe -v ag makes the compilation verbose and shows the execution of the di�erent compiler phases.The -gt -gd -gm ags are used to include code that helps in line number tracing, debugging andgenerating statistics. The -C ag requests the compiler to store the executable object's ID in the �letestReal.g rather than immediately execute the program. The compiled object can be executedlater by

CONTENTS 5% Tests reals, standard output by computing the precision of the builtin type Realconst precisionTester ==object pTesterprocessvar a: Realvar precision: Integera 1.0precision 0loopstdout.PutReal [a]stdout.PutString [\\^J"]a a = 2.0exit when 1.0 = 1.0 + aprecision precision + 1end loopstdout.PutString [\Precision is "]stdout.PutInt [precision, 1]stdout.PutString [\ bits.\^J"]stdout.closestdin.closeend processend pTesterFigure 1: Emerald program for testing precision of the builtin type Realrunec -i testReal.gThe -i option makes the output go to the standard output of the shell executing the runec command:10.50.250.1250.06250.031250.0156250.00781250.003906250.001953130.0009765630.0004882810.0002441410.000122076.10352e-053.05176e-051.52588e-057.62939e-063.8147e-061.90735e-06

CONTENTS 69.53674e-074.76837e-072.38419e-071.19209e-075.96046e-08Precision is 24 bits.Note that at the end of the program stdin and stdout are closed so that the runec commandcompletes and the shell prompts the user for another command.2.2 Another ExampleThis example consists of two program �les that are compiled separately: the �rst de�nes a polymor-phic stack and the second illustrates its usage. While the details about the actual Emerald programare beyond the scope of this document (see [Hutchinson 87a] for a discussion of polymorphism inEmerald), we are interested in the interaction of the compiler and kernel environments here.Figure 2 de�nes the Stack object, and permits the de�nition to be exported to the Emeraldenvironment path (StackEnv) on the current machine. Let us assume that this de�nition has beenentered in a text�le, say polystack.m. It can be compiled as follows:ec -v -gt -gd -gm -C polystack.mThe use of these compiler ags has been explained above. The compiled Stack of Figure 2 is testedin the program of Figure 3. If this program has been entered in the �le, testpolystack.m, it canbe compiled as:ec -v -gt -gd -gm -C testpolystack.mThis program extracts the previously-compiled Stack from the environment path StackEnv.If this program is executed usingrunec -i testpolystack.git will produce the following outputTesting the Stacks.Pushing: 0 on both stacksPushing: 1 on both stacksPushing: 2 on both stacksPrinting in Reverse Order.Next number: 2Next string: 2Next number: 1Next string: 1Next number: 0Next string: 0End of test.

CONTENTS 7
% Export the de�nition of Stack from present compilation environment% to the Emerald environment on the current machine.export Stack to \StackEnv"% A 3�level Emerald object de�nition to facilitate a polymorphic Stackconst Stack == immutable object Stackexport offunction of [eType: AbstractType] ! [result: NewStackType]whereNewStackType == immutable type NewStackTypefunction getSignature ! [Signature]operation Create ! [NewStack]end NewStackTypeNewStack == type NewStackoperation Push[eType]operation Pop ! [eType]function Empty ! [Boolean]end NewStackend whereresult immutable object aNewStackTypeexport GetSignature, Createfunction getSignature ! [r : Signature]r NewStackend getSignatureoperation Create ! [r: NewStack]r object aStackexport Push, Pop, Emptyvar s: Array.of [eType] Array.of [eType].create[0]operation Push[n: eType]s.addUpper [n]end Pushoperation Pop ! [n: eType]n s.removeUpperend Popfunction Empty ! [result : Boolean]result s.emptyend Emptyend aStackend Createend aNewStackTypeend ofend Stack Figure 2: Emerald program de�ning a polymorphic stack object

CONTENTS 8
% This extracts the Stack de�nition from \StackEnv" for use in this compilation.import Stack from \StackEnv"const stackTester == object stackTesterprocessconst intStack : Stack.of [Integer] Stack.of [Integer].createconst strStack : Stack.of [String] Stack.of [String].createconst Max == 3var i : Integer 0stdout.PutString [\Testing the Stacks.\^J"]loopstdout.PutString [\Pushing: " jj i.asString jj \ on both stacks\^J"]intStack.Push[i]strStack.Push[i.asString jj \\^J"] % Catenate a newline characteri i + 1exit when i = Maxend loopstdout.PutString [\Printing in Reverse Order.\^J"]loopvar j: Integer intStack.Popvar k: String strStack.Popstdout.PutString [\Next number: " jj j.AsString jj \\^J"]stdout.PutString [\Next String: " jj k]exit when intStack.Emptyend loopstdout.PutString [\end of test.\^J"]stdout.closestdin.closeend processend stackTester Figure 3: Emerald program to test the polymorphic stack

CONTENTS 93 Debugging toolsThere are several debugging tools available. These tools were designed for kernel debugging, butmany of them provide high level information that may be useful to Emerald programmers.3.1 TracesA trace facility provides for dynamically starting and stopping tracing of kernel events. The traceprogram is called as a normal Ultrix user program. Multiple traces can be active at any given time.Traces are terminated by killing them (use ^C or the kill program) or when the traced kernelcrashes or shuts down. For example,:emtrace -l 5 -T MMTraceMsgstarts full tracing of the Ethernet message module.The -T option is used to give the name of the trace. Multiple -T options may be present resultingin the simultaneous tracing of several di�erent traces. Some traces have multiple levels of output.The default level is three and is in e�ect until another level is given using the -l option, e.g., -l5 raises the level to �ve. In general, higher numbers give more output according to the followingscheme:1 gives only the most serious error messages.2 gives any uncommon event such as the retransmission of a message on the Ethernet. Thus levelsbelow 2 should give no output during normal, error-less operation.3 gives a message for every normal event, e.g., the sending or receipt of an Ethernet message.4 gives more detail about the event, e.g., the message id, the destination, etc..5 gives all relevant details.6 & above gives all relevant and irrelevant details.The emtrace program connects to the kernel and performs the desired trace inde�nitely { it isstopped by killing it.3.1.1 Traces for information about Emerald processesThe following traces provide user level information about the execution of processes:LineNumber outputs a message every time an Emerald process starts or stops execution. If theobject being executed was compiled with the -gt ag then a message is also output beforeattempting to execute a (non-empty) line of source code. The reference contains the name ofthe object 1 being executed as well as the line number in the original source text.ProcessSwitch outputs a line for every process switch.Failure outputs information about every failure that occurs. Higher test output levels give moredetailed information about stack unwinding and register restoring.1The name of the object is the identi�er following the keyword object in the object literal that de�ned the object.

CONTENTS 10Invoke outputs information about remote invocations. Higher levels give a great deal of detail andshould only be used by kernel debuggers.HOTSUpDown outputs a message every time the kernel detects a reboot or crash of anotherkernel. Higher levels give details of the associated table updates.3.1.2 Traces for kernel debuggingThe following traces are intended for kernel debugging only:MMTraceMsg traces activity in the Message Module that is used for sending and receiving mes-sages on the Ethernet.Code traces the loading of object code �les.Create traces the creation of Emerald objects speci�cally storage allocation.Node traces operations executed on the Node abstraction.LM traces assembly and disassembly of messages of unbounded length. Long messages are brokeninto a sequence of �xed size packets for Ethernet transmission via the Message Module.TT traces insertions into the Translation Table that is sent along with remote invocations andobject moves.InvokeQueue traces updating of the invoke queues.SI is a very low level trace of the multiplexing of Ultrix signals.AbCon traces the construction of AbCon vectors. AbCon vectors map abstract operation numbersonto code addresses.Translate traces the object to kernel linkage phase of object code �le loading.Monitor traces monitor entry and exit that are handled by the kernel. Note that many monitorentries and exits are handled directly by compiled code and are not traced.StackSegment traces the allocation and deallocation of Stack segments.Emalloc traces the allocation of Emerald object storage.GC traces garbage collection.Item traces the packing and unpacking of submessages from a single Ethernet message.Locate traces the location protocol that �nds objects given only their OIDs.Conform traces the conforms algorithm. Note, that this algorithm was derived directly from thealgorithm in the compiler.DebugMsg traces miscellaneous kernel stu�.View traces the execution of the view statement.UserIO traces Emerald process output operations on InStream and OutStream.

CONTENTS 11FixMe produces a message each time certain parts of the kernel code is executed. These pointsare considered to be awed in some way. The intent is for some future kernel programmer toeither �x the problem or at least be aware of the potential for disaster.Stack traces the dynamic expansion of stacks.OT traces insertions into the object table.Move traces mobility related code.3.2 SnapshotsThe snapshot program provides for dynamically requesting data about the kernel and for performingsimple kernel management tasks. The snapshot program is run as an Ultrix utility program. Toobtain a list of available snapshots and traces, use one of the following:snapshotsnapshot -n Menusnapshot -n HelpSnapshot names are given using the -n option followed by the name. Some snapshot require aninteger value. These values may be speci�ed using the -d 31 option (use -h 1f to give hexadecimalvalues). Some snapshots require a string value which is speci�ed using the -S StringValue option.An alternate snapshot program performs repeated snapshots and displays the �rst screen-full ofthe result. The program is called wstats and has an option -t 10 to specify an alternate intervalin seconds for each snapshot. The default is 5 seconds of waiting between two successive snapshots.The following sections describe the available snapshots sorted according to usage. Snapshotsmarked with a star(*) are intrusive and change the state of the kernel { they should be used with agreat deal of caution and are intended for kernel hacking (except for the snapshots in Section 3.2.2which are intended for general use).3.2.1 Helpful SnapshotsThe following snapshots are intended for use by Emerald programmers to aid in the use of thedebugging facilities.Help prints a help message.Menu prints a menu of traces and snapshots.Snapshots prints a menu of snapshots.Traces prints a menu of traces.Flush ushes the kernel standard output and standard error.NOP prints a message (this can prove that the kernel is up and alive).

CONTENTS 123.2.2 Emerald Process Manipulationps prints a summary of the state of the Emerald processes.StopProcess* stops the execution of an Emerald process. The execution of the given process issuspended until a StartProcess snapshot re-enables execution of the process. The process maybe both blocked and stopped. If it becomes unblocked (e.g., the monitor for which it wasawaiting entry becomes available) then it will not proceed until unstopped. The process idmay be obtained using the ps snapshot and is commonly given in hexadecimal using the -hoption to snapshot.StartProcess* restarts the execution of the given process.3.2.3 Kernel StatusThe following snapshot is used for printing out the kernel's idea of the current state of other Emeraldkernels.Whatisup prints the state of the other known Emerald kernels.3.2.4 StatisticsThe following snapshots are used for obtaining statistics about the Emerald kernel.MMStats prints message module statistics.EtherStats prints message module statistics for communication with the node whos LNN is givenas an integer parameter.EMDumpStats dumps the statistics about the execution of Emerald programs.EMResetStats* resets the counters used by EMDumpStats.3.2.5 Kernel Data Structure DumpsThe following snapshots produce dumps of kernel data structures.HOTSDump dumps the HOTS table. If an integer parameter is given then only the entry for thegiven LNN is dumped.EmDataDump dumps the dynamically allocated memory containing real and pseudo Emeraldobjects.OT dumps the object table that maps OIDs to object descriptors.MallocDump dumps memory allocated by malloc (and calloc).FLCodeLoadMap dumps the set of currently active code loads.LOCLocateMap dumps the set of currently active location requests.FLCompilerLoadMapdumps the set of currently active compiler load and execute requests.

CONTENTS 13FLCheatingLoadMapdumps the set of so-called cheating code loads in progress.TimerDump dumps the set of dynamically settable timers.ActiveTimers dumps the set of currently active timers.FLRemoteLoadMapdumps the set of remote code loads that are in progress.CurrentLoad prints out the current Emerald process load.INVKInitiallyMapprints out the set of objects that currently are not fully instantiated and have processes awaitingaccess to them.3.2.6 Kernel ManagementThe following snapshots can be used to modify the kernel state and are to be used with extremecaution. Only seasoned kernel hackers should use these!PullUp* the HOTS table entry whose LNN is given as a parameter is changed to indicate that theLNN is up.PullDown* the given LNN is marked as DEAD in the HOTS table.FLLoadFile* the code �le with the given OID is loaded from disk (this snapshot is obsolete).FLSendCode* the code �le with the given OID is sent to the kernel whose LNN is given as aninteger parameter.FLCreateOneOfCTOID*the kernel instantiates an object using the code �le identi�ed by OID.SendAlive* send out an \I am alive broadcast".ResetTimeSlicer* reset the time slicer to the interval given as an integer in units of milliseconds,e.g., 1000 means time slice every second.Shutdown causes the kernel to commit suicide.GC start a new garbage collection (not implemented).3.2.7 Changing the value of kernel integer variablesThe following snapshots may be used to inspects and change the value of integer variables in thekernel. Warning: you have better know what you are doing before using these snapshots. Certainkernel variable are intended to be inspected and have names formatted as \cXX...." where XXindicates what module they are de�ned in (e.g., MM for message module). Other variables may bemodi�ed and have names formatted as \vXX....".Variables prints the current cache of variable names and their values.PrintVar prints the value of the variable whose name is given as a string (using the -S option.ChangeVar changes the value of the variable whose name is given as a string. The new value isgiven as an integer (using the -h or the -d option).

CONTENTS 143.2.8 TestingThe following snapshots are used exclusively for testing long Ethernet messages: LMSetPingData-Size, TLMPingTiming, RIPing, LMPing. Refer to the kernel code for the Long Message module(lmcode.c).3.3 Remote DebuggingBoth traces and snapshots may be enabled remotely by using the -m option, e.g., bysnapshot -n MMStats -m RoskildeThe network host name is used to identify the computer where the desired kernel is running. Sincethere is only one kernel incarnation per computer, no further speci�cation is needed.

CONTENTS 15A Summary of Helpful InformationThis section summarizes the useful information about Emerald. Note that all the Emerald programsare available in /usr/projects/emerald/bin, which must be included in your Ultrix search pathto preserve sanity.A.1 Emerald CompilerThe following helpful information about the Emerald compiler used for compiling an Emerald sourceprogram and executing it can be obtained using: ec -h.Usage: ec <flags> <filename>flags: [-why] [-v] [-c] [-C[-]n] [-z] [-h] [-g[dtm]] [-i] [-Z][-T<tracename>[=level]] [-O<optionname>[=value]][-R <rootpath>] [-[Mm] <machinename>]maintenance flags:[-b] [-t] [-d <oid>]The Emerald Compiler compiles a single Emerald source program andexecutes it on the local Emerald kernel. The flag arguments are:-why Tell me why conforms checking fails.-v Be verbose about the various compiler passes-c Stop after type checking (except when doing a builtinwhere it means stop after doing exports)-C[n] Stop after n passes (N >= 0), or with n passes to go(n < 0) -C-2 means stop after generating code, -C-1 meansstop before invoking the Emerald kernel to run the program-z Leave the temporary files in the current directory-h Prints this list.-gd Compile code to assist in debugging.-gt Compile code to enable line number tracing.-gm Compile code to gather statistics.-i Interactive - the compiler's stdin/out is passed to thecreated object.-Z Create mutable objects at compile time.-T<traces> Turn on tracing. The traces argument is parsed as a commaseparated string of trace names and optional trace valueswith an = between the name and value. A legal string is:-Tassign,environment=5Use -Thelp to see the available traces.-O<options> Turn on various options. The options argument is parsedas a comma separated string of option names and optionaloption values with an = between the name and value.A legal string is:-Oinvokequeue,comment=5Use -Thelp to see the available options.-M <name> Run the compiled program on machine named "name".-R <path> Use path instead of /usr/em as the root of the Emerald

CONTENTS 16Unix subtree.Maintenance flags:-b Compile the description of a builtin type-t Write the intermediate tree file at interestingstages (currently undergoing change)-d<oid> Read the intermediate tree file (internal format)and display itA.2 Debugging ToolsA.2.1 TracingUsing: emtrace usage prints out the following information:Usage: trace <options>-T <name> Start tracing-S <name> Start the trace; output to kernel stdout(to stop, use -C in a later call)-l <level> Set the trace level for -S & -T(must preceed -T and -S)-M <name> Trace kernel on the named machine-m <name> Trace kernel on the named machine-x [<level>] DebugMsg trace-t [<level>] MMTraceThe program waits until it or the kernel dies.The kinds of traces available can be obtained using the snapshot command, as explained next.A.2.2 SnapshotsUsing snapshot usage gets the following information:Usage: snapshot [-m <machine name>][-N <LNN> | -X <hexLNN> | -P <pid>][-n <snapname>] [-{d|h} <parameter value> | -S <string>]Using snapshot -n Menu gets the following information:The following 50 snapshots are available:Menu HOTSDump ActiveTimers TimerDumpEtherStats MMStats PullUp PullDownWhatisup Snapshots Traces VariablesFlush Help NOP PrintVarChangeVar FLLoadFile FLSendCode FLCreateOneOfCTOIDFLCodeLoadMap FLCompilerLoadMap FLCheatingLoadMap FLRemoteLoadMapFLUnknownATAbConMa FLAbConMap96 SendAlive DumpCondMapShutdown ps StopProcess StartProcessMallocDump EmallocDump GC ResetTimeSlicerCurrentLoad RIPing LMPing LMSetPingDataSizeINVKInitiallyMap INVKFrozenMap OTDump OTDataDumpLOCLocateMap EmDataDump EMDumpStats EMResetStats

CONTENTS 17TPingTiming TLMPingTimingThe following 36 traces are available:HOTSUpDown SI DebugMsg MMTraceMsgAbCon View Code TranslateUserIO Failure Monitor FixMeCreate StackSegment Stack NodeOwn Portability Vector EmallocGC LM Item ProcessSwitchLineNumber Invoke OT TTLocate Move InvokeQueue ConformCheckpoint CPTT Recover XTo print variables, try the Variables snapshot*** End of Snapshot ***A.2.3 Repetitive SnapshotsUsage: wstats [-N <LNN>] [-M <Machine Name>][-t <WaitInterval>] [-n <Snapshot>]A.2.4 Short CutsSome commonly used snapshots have been placed in /usr/projects/emerald/bin as \full-edged"programs:Shutdown is equivalent to snapshot -n ShutdownWhatisup is equivalent to snapshot -n Whatisupemps is equivalent to snapshot -n psempsv is equivalent to wstats -n psA.2.5 The GuruWhen all else fails, contact your local Emerald guru.

CONTENTS 18B Installer's GuideEmerald is currently operational at the following sites: University of Washington (Seattle), Uni-versity of Arizona (Phoenix), DIKU (Copenhagen) and Digital Equipment Corporation (Littleton).Since Emerald is an on-going research project, and the Emerald system is constantly being revised,it is likely that newer (and better!) versions of the Emerald system will be released.This appendix describes how to install new Vax releases of the Emerald system; a future releaseof this document will deal with the installation of Emerald on the SUNs. There is a four-partprocedure that can be used to install the Emerald system:1. The preliminary initialisation,2. Making the Emerald Compiler,3. Making the Emerald Kernel, and4. Testing the new installation.B.1 The PreliminariesSeveral site-dependent details have to taken care of �rst. First, the di�erent sites have di�erentdefaults for the Ultrix directories needed by the Emerald system:Digital: /usr/local/emWashington: /usr/emArizona: /usr/norm/emDIKU: /usr/projects/emeraldThe standard Emerald distribution tape contains the directory em. For the above speci�ed sites,it should be loaded in the above speci�ed directories; for other sites, it may be loaded as desired,but the installer must make the changes suggested below. This guide simply uses a generic ../ torefer to the Emerald directory; the installer is responsible for using the appropriate directory.For the proper execution of Emerald, the default Emerald directory on each machine shouldcontain the following sub-directories: bin, EC, ErrCodes, Nodes, and Builtins. The Emeralddirectory on the machine designated for the source code should also contain the sub-directories:Language and Kernel, which contain the required source code; the standard Emerald distributiontape will correctly load the sources onto the chosen default directory. After loading the tape, thefollowing preliminary steps should be taken:1. Change to the Emerald directory.cd ../em2. Edit the �le fixemdir to include your machine name, and make appropriate choices for theother alternatives (emdir, rootdir, emserverhost, emsite).3. The following command will take a long time as it �nds all appropriate �les that have to beedited to include the proper pathname for the Emerald root directory.fixemdir -r

CONTENTS 194. After the �les have been located, the following command can be used to perform the actualediting. fixemdirB.2 Making the CompilerThe following steps have to be taken to make the Emerald compiler:1. The Operation Name Server has to be created �rst; this is the server that maps the stringsrepresenting operation names into unique integers. In addition, it manages the allocation ofOIDs for compiler generated objects. To create this, execute the following:cd ../em/EC/OperationNames.makemake new2. This step creates the dummy builtin objects that helps start the compilation of the Emeraldcompiler. The commands to be executed here are:cd ../em/Language/Compiler/DBuiltinsmake3. This step takes a fairly long time, and when done, will produce the new Emerald compiler.The Ultrix commands needed are:cd ../em/Language/Compiler/Builtins../em/bin/newTreeVersionmake fromscratchcd ..rm -f ../em/bin/eccp -p ec ../em/bin/ec4. The runec utility has to be created next. The following commands will accomplish this:cd ../em/Language/Runecmake installB.3 Making the KernelThe following three steps are needed to create the Emerald kernel, i.e., the run-time system:1. The �rst step will require some actual editing of at least two of the kernel source �les: main.cand msgCode.c. In the �rst �le, you should add the names of the machines in your localenvironment that will be running the Emerald system. While these names are not reallynecessary, providing the names will enable better, and more meaningful diagnostics.In msgCode.c you will �nd some stu� dealing with ETHERDEV. The code needs to know thename of the Ethernet devices used by the various local machines. This usually varies from placeto place, and from system to system. Edit it to get the appropriate name for your ethernetdevice. Look in the Ultrix �les, /etc/rc*, for the name of the Ethernet device. Alternatively,execute

CONTENTS 20/usr/ucb/netstat -n -iand use the �rst name speci�ed in the result. This device name is needed because the Emeraldrun-time system requires the ability to do udp broadcasts, and needs the device to �nd thebroadcast address.2. After the above editing, the Emerald kernel can be made by executing the following:cd ../em/Kernel/Emmake dependmake emmv -f em ../em/bin/em3. The Kernel Measurement and Debugging (KMD) tools need to be made next. They are usedto examine/modify the state of the run-time system when it is running. Of these, emtraceand snapshot are the most useful.cd ../em/Kernel/KmdOpsmake -f MakeUtil installB.4 Testing the InstallationThe �nal step in the installation is to ensure that the system has been made properly. There isa minimal set of tests that exercise both the Emerald compiler and run-time system on a singlemachine. The following commands enable the testing of the Emerald installation:cd ../em/Language/ExecTestsmake cleanmake testIf the output from make test looks �ne, the Emerald system has probably been installed properly.

REFERENCES 21References[Black 86] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. ObjectStructure in the Emerald System. In Proceedings of the ACM Conference onObject-Oriented Programming Systems, Languages and Applications, pages 78{86,October 1986.[Black 87] Andrew P. Black, Norman C. Hutchinson, Eric Jul, Henry M. Levy, and LarryCarter. Distribution and Abstract Types in Emerald. IEEE Transactions onSoftware Engineering, 13(1), January 1987.[Hutchinson 87a] Norman C. Hutchinson. Emerald: An Object-Based Language for Distributed Pro-gramming. PhD thesis, TR 87-01-01, Department of Computer Science, Universityof Washington, Seattle, January 1987.[Hutchinson 87b] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy, andEric Jul. The Emerald Programming Language Report. Technical Report 87-10-07, Department of Computer Science, University of Washington, Seattle, October1987. (Revised August 1988).[Jul 88] Eric Jul, Henry M. Levy, Norman C. Hutchinson, and Andrew P. Black. Fine-grained Mobility in the Emerald System. ACM Transactions on Computer Sys-tems, 6(1), February 1988.[Raj 88] Rajendra K. Raj, Ewan D. Tempero, Henry M. Levy, Norman C. Hutchinson,and Andrew P. Black. The Emerald Approach to Programming. Technical Re-port 88-11-01, Department of Computer Science, University of Washington, Seat-tle, November 1988. Revised February 1989.

