
The Lattice of Data Types, orMuch Ado about NILAndrew Black and Norman HutchinsonAbstractSome programming languages, notably object-oriented languages, structure their data types into a tree,with the child relationship indicating a more powerful type, i.e., one with more operations. This tree hasbeen generalized, e.g., by Ingals and Borning [Borning and Ingalls 82], to a directed acyclic graph.The present paper proposes a further requirement: that data types form a lattice under the sameordering. Bottom in the lattice is the root of the conventional inheritance tree, type Any with theminimal set of operations. Top is type None, possessing all possible operations. The unique element ofthis type is the familiar Nil, the entity which can be treated as belonging to any type, but which breaksas soon as one tries to operate on it.1 IntroductionThis paper is concerned with strongly typed programming languages and with the clear and uniformtreatment of the indispensable constant Nil. It is motivated by our experiences with the Emerald pro-gramming language, but most of the ideas carry over in to a conventional strongly-typed language likePascal or Algol-68.Emerald is an object oriented language; its object structure is described in [Black et al. 86] and itstype system in [Black et al. 87]. Each identi�er in an Emerald program is associated at compile timewith an abstract type, which is nothing more than a set of operations and their signatures. An operationsignature gives the types of the arguments and results of the operation. The type of an identi�er can beregarded as a statement of all the possible operations that can be performed on the objects that will bebound to it. For example, consider the type Directory de�ned as:const Directory == type TLookup[K: String] ! [E: Entry]Add [K: String, E: Entry] ! []Delete[K: String] ! []end TThis says that Directory is a type with three operations: Lookup, Add, and Delete. The signature ofLookup is \[K: String]! [E:Entry ]", which means that it takes an argument of type String and returnsa result of type Entry. Both the argument and result lists may be empty.If a variable is declared asvar d: Directorythen it is legal to write invocations like d.Lookup[\key"] and d.Delete[\bad"] but not d.New. Type safetyrequires that when we execute the assignmentd  expthe object returned by exp does indeed support the operations Lookup, Add, and Delete, with the correctargument and result types. Moreover, we have chosen that in the normal case it is the responsibilityof the compiler to ensure that this is true. It is perfectly acceptable for exp to return an object withadditional operations, but those operations will never be invoked on d.1



Slightly more formally, we say in Emerald that a object o can be bound to identi�er i if the type of oconforms to the type of i. A type O conforms to type I, written O �> I, i�:� All operations in I are also in O (with the same names)� For each operation 
I and corresponding operation 
O{ they have the same number of arguments{ they have the same number of results{ the type of each result of 
O conforms to the corresponding result of 
I{ the type of each argument of 
I conforms to the corresponding argument of 
O.Note that the results of the operations must conform in the same direction as the types to which theybelong, but that the arguments must conform inversely. This reects the opposing information ows ofarguments and results.In Emerald, the type Any has no operations. So, if a variable is declared asvar a: Anyany object at all can be assigned to a, since any object conforms to Any. The type ReadOnlyDirectory,with Lookup as its only operation, conforms to Any, and Directory conforms to ReadOnlyDirectory. Infact, �> induces a partial order on types, as depicted in the following DAG:? ?DirectoryWriteOnlyAnyReadOnlyDirectoryDirectoryAdd Lookup DeleteAddLookupDeleteAddLookupDeleteNextEntry LookupNextEntryAppendOnlyDirectory
Some types are incomparable: the type with Add as its only operation is incomparable to the typewith Delete. Moreover, the type with Add [String]! [] is incomparable to the type with Add [Integer]! [Integer].One problem with this scheme is how to type Nil, the name of the \unde�ned" object. We typicallywish to use Nil in assignmentsd := Niland in tests: 2



if d 6= Nil then d.Lookup[\key"] endifFrom what has been said so far, for Nil to be assignable to d, it must support all the directory operations.Similarly, for Nil to be assignable tovar i: Integerit must support all of the integer operations. By extension, Nil must possess all of the operations of allpossible types that might ever be constructed. This seems like a contradiction, because operationally weknow that Nil does nothing. Indeed, it is a contradiction, because Nil would have to support add withan unbounded number of conicting signatures.The conventional solution to this dilemma, and the one that was adopted initially in the design ofEmerald, is to make Nil a special case. Either Nil refers to a single special object that does not otherwise�t into the type system, or, as in Algol 68, there is a separate Nil for each reference type, and a syntacticmechanism for disambiguating the symbol Nil that denotes them all [vanWijngaarden et al. 76, Section2.1, 3.2].2 From partial order to latticeThe alternative solution presented in this paper is to accept the contradictions and to complete the designof the type system in such a way as they cause no damage. In the partial order we have so far described,it is the case that every pair of types T and U have a \meet" or greatest lower bound \T u U" thatcontains just those operations that are common to T and U. If there are no operations in common themeet is Any, which is the bottom element in the partial order. If T and U have in common just operation� [f ] ! [g ] then the type containing just � with that signature is their meet. However, if they bothsupport operations � but with di�erent signatures � [fT ] ! [gT ] and � [fU ] ! [gU ], then T meet U isthe type containing � [fT t fU ] ! [gT u gU ] if fT t fU (the join of fT and fU ) is de�ned, and Anyotherwise. This de�nition generalizes in the obvious way to types with more than one operation.The conventional mathematical solution to this inelegant caveat \if the join exists" is to declare thatall joins do exist, i.e., to embed the partial order in a complete lattice. We do not loose generality bythis assumption, since such a lattice always exists [Stoy 77, pp. 88-91, 414]. What is a little surprisingis that (at least some of the) the extra elements we introduce are semantically useful. In particular, thetop element of this lattice of types provides a type for Nil.We de�ne T u U as the largest type such that T �> T u U and U �> T u U, and T t U as thesmallest type such that T t U �> U and T t U �> T. Just as we denote bottom (?), the minimaltype s.t. for all types T, T �> ? by Any, we denote top (>), the maximal type s.t. for all types T,> �> T by None. Nil is simply an object of type None; it supports all possible operations, with allpossible signatures, including the contradictory ones. In other words, Nil supports add with 1,3, and17 arguments of all possible types. It supports an operation miracle s.t. wp [miracle] R = true and anoperation Halt [Turing-machine, Tape] ! [Boolean]. Of course, we are speaking only of type checking,which we view as syntactic. If an attempt is made to invoke any of these operations, the implementationbreaks, which is exactly the characteristic one expects of Nil.3 A lattice of types or a lattice of signaturesThe preceding discussion has demonstrated one bene�t of extending the partial order of types to acomplete lattice | the usefulness of the top element, None. We are left with the problem of de�ning thejoin (or least upper bound) operation on types. In the absence of overloading (which would require themodi�cation of our notion of type to allow a type to include multiple operations with the same name,and which we have systematically ignored in this discussion), we have two obvious choices.Since our motivation for forming a lattice from the partial order of types was this lattice's top element(> or None), we could de�ne the join of two types with conicting operation signatures to be > in everycase. That is, if types T and U are de�ned by: 3



type TA[Integer ]! [Integer ]B [Integer] ! [Real]end Ttype UA[Integer ]! [Integer ]B [Integer, Real] ! []end UThen we de�ne T t U as > because the signatures of BT and BU contradict. In de�ning t in this waywe make minimal changes to our original partial order, adding only the single element None in order tocomplete the lattice.Our second alternative is to allow multiple contradictory types instead of collapsing all of them to thesingle element >. Before getting into the details, let us �rst consider an example. Given types T and Uabove, we see that their B operations conice, but their A operations are compatible, in fact identical.It may be useful to de�ne their join (t) as a type with an operation A from Integers to Integers, and anoperation B with a contradictory signature, as follows:type TjoinUA[Integer ]! [Integer ]B >end TjoinUThis de�nition of join retains what information it can from the two types being joined, while adequatelyreecting those operations on which the conict.To formally de�ne the join to achieve this e�ect, we de�ne a lattice of operation signatures, includingboth a top and bottom element. The bottom element of this lattice was previously useful in specifying thatthe operation is non existent in a type [Black et al. 87]; the top element is now useful as the speci�cationof a contradictory operation. We can now de�ne the join operation between operation signatures, o andp. � If either of o or p is ?, then the join is the other.� If either is > then the join is >.� If o and p have di�ering number of arguments or results then the join is >.� If o and p have the same numbers of arguments and results, the the join is the signature with thepairwise u (t) of the corresponding argument (result) types.4 EmeraldThe Emerald type system was designed as a partial order, and later extended to a lattice by the in-troduction of the single top element None. All contradictory types therefore collapse into this singleelement.5 Comparison with Other WorkThe idea of expressing the relationship between data types as a lattice has a long history. However, thepresent work is (to our knowledge) unique in that it deals with types as sets of operations rather than assets of values, as advocated for example by Donahue and Demers [Donahue and Demers 85].Cousot and Cousot [Cousot and Cousot 77] address the problem of positioning Nil in a lattice ofreference types. However, the focus of their paper is to eliminate the run-time check that is otherwisenecessary before dereferencing a pointer. They treat each conventional reference type as the top of alattice of types containing the singleton type of Nil and the type of non-Nil references as the only properelements. They thus require that there be a separate Nil pointer for each reference type. Their ordering4



relation is inclusion of values: the values of the complete conventional reference type is the union of Niland the non-Nil reference values.In the same year, Shamir and Wadge [Shamir and Wedge 77] presented a type system in which alltypes and all values are part of the same lattice. Their ordering relation is the conventional approximationordering on values, and inclusion on types; the assertions x v y, x is of type y, and any object of type xis of type y are all equivalent. So, for example, all the integer values and truth values are incomparable,but 2 and 4 are both v eveninteger, which is v integer which is v real. As in the Emerald type system,the question \what is the type of 5" is meaningless: any particular element of their lattice has a chain oftypes that describe it to a lesser or greater degree of accuracy. In Emerald, this chain is �nite, becauseall obejcts have a �nite set of operations. The l.u.b. of this chain contains all of the operations; we callit the \best �tting abstract type". In Shamir and Wadge's system, since a type is a set of values, eachvalue belongs to an in�nite set of intuitive types. 5 is of type integer, 5 is of type real, 5 is of type prime,? is of 5 and 5 is of type U (the Universal type) are all true assertions.The treatment of functions in Shamir and Wadge's system is somewhat similar to Emerald. Inparticular, they recognise the essential antimonotonicity of argument types. real w integer, since realcontains all the integer values; integer ! real (the type of all functions from integers to reals) w integer! integer, which in turn w real ! integer.A recent paper by Cardelli, Donahue and Nelson [Cardelli et al. 87] describes a type system with themost similarity to that advocated here. Modula 3 aims to clean up the ragged edges of Modula 2's typesystem where it deals with subranges and opaque types, and also introduces a simple set of object typeswith inheritance. A notion of subtyping is introduced that orders types by containment, although this isinterpreted in such a way that it also provides for a weak conformity of object types.In Modula 3, a type T is a subtype of U, written T <: U, if every value of type T is also a value oftype U. This is motivated by the example [0 .. 9] <: Integer. If t is of type T, and u is of type U, thenthe assignment u := t is safe, and t := u requires (in general) a run-time check. (Modula 3 makes thischeck implicit.) The notion of containment of values is extended so thatTYPE IC = REF RECORD i: INTEGER; c: CHAR END;TYPE I = REF RECORD i: INTEGER END;are ordered by IC <: I. This is motivated by the fact that an IC value is the address of an integer �eld i,followed by a char �eld c, whereas an I value is the address of an integer �eld i. Every value of type ICis therefore also a value of type I, from which the stated ordering follows by de�nition.In Emerald, records are considered to be a shorthand for objects with the appropriate Set and Getoperations to access the �elds. So type I has SetI and GetI operations that accept and return an integer,and type IC has these operations as well as additional operations to access c. In our ordering, I <� IC(read I has fewer operations that IC, or IC conforms to I). Both systems allow an IC value to be assignedto an I variable, but the inverse assignment requires a run-time check (which is implicit in Modula 3, andexplicit in Emerald | a view expression.)Beneath this super�cial simlarity, the two type systems are very diferent. Basically, Emerald's concernwith operations rather than values yields a type system that is far more abstract. Type conformity is notconcerned with the order of the �elds in a record, or indeed whether they exist at all. Two quite di�erentrepresentations can both conform to the same type, provided that they possess the same operations.The arguments and results of the operations need not be identical, provided that they conform in theappropriate way.In contrast, Modula 3's preoccupation with the concrete details of an object's representation permitsa simple form of inheritance based on adding �elds and operations to an existing type. In Emerald'smore abstract setting, it is not even clear how to give a meaning to the question \is every value of typeT also a value of type U?" Comparing the bits that make up a T and seeing if they can be interpreted asa U is inadequate, and not only because both T and U can have multiple, quite di�erent, represenations.By `is every T also a V', the Modula 3 type system really means to ask `when a T value is interpreted asa U value, is it the same value? Emerald views sameness a semantic issue, and as such quite outside thejurisdiction of the type system.In fact, the only Emerald types for which the \value containment" de�nition of typing would makesense are those built-in types which may not be reimplemented, whose representaion is known to the5



compiler, and whose semantics are part of the language de�nition. Chief among these are the integers.Emerald does not provide a build in constructor for integer subranges, but if it did, in order to make [0 ..9] �> Integer, but not Integer �> [0 .. 9], the subrange would have to have more operations than Integer.To make this possible in general, it would be necessary to invent maxinteger2 arti�cial operations, solelyin order to provide the proper inclusion on integer subtypes. An explicit create operator would be neededto achieve the conversion from integer to each subrange.In Modula 3, Null (the type containing the single value Nil) is treated as <: all reference, pointer andobject types. This implies that (the reresentation of) Nil is also a (representation of the same) value inall of those types, which is indeed the conventional interpretion of Nil in a language like Pascal. However,Modula 3, along with Emerald, achieves this in a uni�ed and consistent setting.6 SummaryNil has clean semantics, but the irony of the situation is that no one cares!References[Black et al. 86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structurein the Emerald system. In Proceedings of the ACM Conference on Object-OrientedProgramming Systems, Languages and Applications, pages 78{86, ACM, October1986. Published in SIGPLAN Notices, vol. 21, no. 11, November 1986.[Black et al. 87] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter. Distri-bution and abstract types in Emerald. IEEE Transactions on Software Engineering,13(1), January 1987.[Borning and Ingalls 82]Alan H. Borning and Daniel H. H. Ingalls. Multiple Inheritance in Smalltalk80.Technical Report TR 82-06-02, UWCS, June 1982.[Cardelli et al. 87] L. Cardelli, J. Donahue, and G. Nelson. The Module 3 Type System. Draft Tech-nical Report, DEC SRC, October 1987. Appendix to Draft Modula 3 LanguageSpeci�cation.[Cousot and Cousot 77]Patrick Cousot and Radhia Cousot. Static determination of dynamic properties ofgeneralized type unions. Proceedings of ACM Conference on Language Design forReliable Software, 77{94, March 1977. SIGPLAN Vol 12, Nr 3.[Donahue and Demers 85]James Donahue and Alan Demers. Data types are values. ACM Transactions onProgramming Languages and Systems, 7(3):426{445, July 1985.[Shamir and Wedge 77]Adi Shamir and William Wedge. Data types as objects. In Lecture Notes inComputer Science, Volume 52 - Automata, Languages and Programming, Springer-Verlag, 1977. pp. 465-479.[Stoy 77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-ming Language Theory. MIT Press, 1977.[vanWijngaarden et al. 76]Adriaan van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sinto�,C.H. Linsey, L.G.L.T.Meertens, and R.G. Fisker. Revised Report on the AlgorithmicLanguage Algol68. Springer Verlag, 1976.6


