
An E�cient Implementation of Distributed Object PersistenceNorman C. Hutchinson Clinton L. Je�ery11 July 1989AbstractObject persistence has been implemented in many systems by a checkpoint operation in which asnapshot of the object's state is saved to stable storage. This mechanism works well in a single proces-sor system, but in a distributed programming environment it is inadequate. In an application whosecomponents are running on many processors, it is not acceptable for the computation to wait for nodesto recover after a processor failure. The Emerald language checkpoint operation provides a convenientmeans by which an object may save its state not only to disk but alternately to other nodes on the net-work. This results in a signi�cant performance improvement in the event of processor failure, especiallyfor interactive distributed applications.1 IntroductionLocal and wide area networks pervade modern computer installations. From the user's perspective, the pointof having network access is to provide convenient and even transparent network access to remote resourcesand data. For the applications programmer wishing to write a distributed application, the network accessprovided by the operating system can be slow, or di�cult to use, or both. While better operating systemdesigns and implementations such as the x-kernel, V, and Amoeba systems are solving the former problem,the programmer wishing to write applications for the network is still confronted by extremely complexproblems introduced by communications, synchronization, and fault handling in the network.Within a programming language designed for the single processor model, language support for distributedapplications is limited to function call libraries or their equivalents. While this approach has its merits andhas met with some success, in most implementations to date it has resulted in well-written, slow distributedapplications, or poorly-written, complex network service libraries, or both. More satisfactory performanceresults have already been obtained in language research projects which integrate the network model into aprogramming language.1.1 EmeraldIn the Emerald programming language, language primitives move both data- and process-bearing objectsfrom node to node, locate them, and invoke them independent of whether they are local or remote. Emeraldis object-oriented in the strong sense that the same object model applies to small local entities such asintegers as applies to large global entities which have need of network services. Emerald is a strongly-typed,compiled language. Static analysis allows the compiler to generate very high performance procedure callsfor invocations which are local, while generating location- independent remote invocations when the targetobject may be remote. Further details of the Emerald language, its model, and its implementation havebeen published elsewhere[?,?].Recognizing the need for fault tolerance in programs whose parts may be spread throughout the network,the original Emerald design speci�ed object persistence across node crashes in the form of a checkpointprimitive. The checkpoint operation is invoked by an object whenever its state has been modi�ed; in theoriginal implementation the object's image was written to some stable store such as a disk device. Similar1



Distributed Object Persistence, 11 July 1989 2mechanisms have been proposed and implemented in many or even most other object-oriented programmingenvironments, and the checkpoint operation's performance characteristics have been thoroughly analyzed.In the case of Emerald, checkpointing an object is very similar to moving it to another node, since in bothcases the object must be linearized for transmission, and unpacked before reactivation. While an object islinearized or packed it may be viewed as passive and may not be invoked or otherwise acted upon. After anobject is unpacked, any suspended processes are restarted in the case of an object move, while in the caseof a recovery after checkpoint, a designated recovery process is started up.After implementing the checkpoint operation as described above, we found the resulting system functionalbut inadequate. The remainder of this paper discusses the problem, several solutions which have beenproposed in the literature, and the modi�ed semantics we implemented for checkpoint with their resultingperformance characteristics.2 Another Look at the Classic Fault Tolerance ModelThe model for machine faults assumed by Emerald is that of the standard Fail-Stop processor[?]. The faultshandled are those which are common in practice: a processor fault indicates loss of the contents of mainmemory on that processor and a complete stop in operation for an undetermined (but generally not in�nite)amount of time. Byzantine failure, network partitions, and other critical errors require far more sophisticatedmechanisms; protocols which handle these faults are themselves extremely complex distributed applicationsand make excellent Emerald programming exercises, but they are not provided as builtins.The language's persistence mechanism is intended, then, to address the relatively common occurrenceof a node crash. While checkpointing to disk saves an object's state and ensures forward progress in acomputation despite machine failure, the object cannot be reactivated until the disk can be read. In asingle processor system this is no inconvenience, but in a distributed environment it is both unneccessaryand unacceptable for a large distributed computation to halt inde�nitely every time one of the participatingnodes crashes. The more nodes involved in a computation the more important it is that the relevant objectsremain available.All distributed computations can be viewed in some sense as interactive applications, since by de�nitionthe processes interact with processes on other machines in the network, or with the user, or both. Itis this interactive nature which renders a conventional checkpoint operation inadequate in a distributedenvironment. In the case of Emerald, the programming language mechanisms by which an object was madepersistent have been widened to allow that object to remain available not only after a node recovers, butalso during the interval between crash and recovery.The obvious solution to the problem of availability is to create as many copies of the objects as its impor-tance warrants and place them on strategically located nodes in the system. Replicated objects have beenproposed in several fault tolerant distributed operating systems, some of which have been implemented[?,?].In addition to increased availability during faults, active replicated objects can provide e�cient access inmany cases such as databases in which many queries are made from di�erent processors to the same data.In applications where read operations are much more frequent that write operations, most operations arelocal.Unfortunately, to modify the state of such replicated objects requires a heavyweight combination ofcommunication and synchronization in the form of a transaction or commit protocol. Changing a replicatedobject's state is both greatly slowed and made more prone to the faults which motivated replication in the�rst place.In practical terms for Emerald, such a scheme would have required a major redesign in both the languageand the runtime system. Replicated objects in the sense described above constitute a new computationalmodel. In addition to the implementation of transactions, the existing lightweight object motion, location,and remote invocation protocols would have to be replaced by more ponderous counterparts. Transactions arethemselves complex distributed applications which make ideal Emerald programming exercises, but correctlyimplementing their semantics entail more work than many distributed applications require.



Distributed Object Persistence, 11 July 1989 3Nevertheless, to provide availability despite node faults, it is necessary to replicate information. Analternative to maintaining several active copies of the object whose state must be kept consistent is tomaintain several passive copies of the object. Since the passive copies need only be consulted in the rareevent that the active instance is lost in a node crash in order to elect a new active instantiation, all of thesynchronization costs and most of the communications costs of transactions can be avoided.Semi-passive replication schemes have been adopted in existing systems such as the Tandem NonStopSystem and ISIS[?,?]. In most implementations of passive replication to date, the passive copies of theobject receive all messages destined for the object (which are broadcast or multicast). They execute thestate-modifying operations concurrently with the active copy of the object, but do not send reply messages(aside from whatever is required by the underlying reliable message protocol). These schemes thus avoidcertain communications and syncronization costs incurred by active replication. They still incur a largeexpense in terms of redundant machine cycles as the computation is duplicated for each replica. The moreextreme approach adopted by Emerald is to execute the state-modifying operation on a lone active copy andupdate passive copies via checkpoint upon completion.Passive copies of Emerald objects originally were created when an object checkpointed to disk. Extendingthe checkpoint operation to send one or more copies of the object to other nodes required a minimal amountof code in the runtime system and almost no change in the language itself. The existing object distributionprotocols continue to concern themselves solely with active object instances; the election protocol comesinto play only as a failure handler when the location protocol determines no active instance of the object isavailable.3 Language ChangesThe Emerald checkpoint primitive has been modi�ed in several ways. The basic operation for most applica-tions will no longer write the object to disk, but rather send out one or more copies of the object to othernodes. For applications requiring a guarantee that an object's state will not be lost, the original disk-basedcheckpoint operation is available via the new keyword confirm. Checkpoint and confirm checkpoint op-erations may be freely interspersed. To specify the nodes on which to maintain copies of the object's state,the programmer merely codescheckpoint at < nodelist >For the sake of existing Emerald source code, the checkpoint operation in the absence of a precedingcheckpoint at statement defaults to the original disk-based operation. In order to prevent recovery ofobsolete versions of an object, confirm checkpoint sends out copies of the object to all nodes on thenodelist for those objects which employ the new checkpoint at primitive. The checkpoint-at nodelist isdynamic and may be de�ned and rede�ned at runtime. The replication multiplicity, determined by how manynodes you place on your nodelist, is presently limited to a small constant1. This number is an exponent inthe probability that the object will remain available during any period in which the network is in operation.The particular constant we selected was suggested to us by the literature [Garcia-Molina].Specifying a nodelist of maximal size will ensure availability except in a severe catastrophe such asnetwork-wide power outage or natural disaster. The simulation studies of Noe and Andreassian have sug-gested that specifying more than a single passive copy will provide little additional bene�t in terms ofavailability [Noe87]. While this is no doubt true, there are some applications which have extreme availabilityrequirements. Our implementation allows additional copies to be maintained at very little cost other thanthe space required to store the data.Object recovery is triggered automatically during remote invocation by failure to locate an active copyof the object in the network. Objects are also restarted when passive copies of unavailable objects are foundduring garbage collection. The programmer is advised to use the network-based checkpoint operation for allbut the most permanent objects, since it is considerably faster during both checkpoint and recovery.1�ve, in fact



Distributed Object Persistence, 11 July 1989 4The changes described above retain entirely backward-compatible semantics for existing Emerald appli-cations. To utilize the availability feature most objects which currently checkpoint should be coded with anadditional checkpoint-at clause in their initialization. Permanent (i.e. disk-based) objects which also utilitizethe added availability feature require the addition of the confirm keyword to their existing checkpoint state-ments. The mechanism is considerably more general than this easy usage suggests, and some object-motionpatterns may warrant a more sophisticated replication strategy. The programmer should view replicationas another object distribution primitive and use it in concert with the other powerful mechanisms Emeraldprovides.3.1 ExampleTo illustrate the ease and control with which the programmer can now add availability to Emerald applica-tions the facility was added to the Emerald mail system. For those components which were deemed importantsuch as unread message objects, a checkpoint-at clause was added. Once a mail message is read the usermay either designate it as important (in which case it remains replicated) or unimportant, in which case thereplicated copies are reclaimed and a single copy is written to disk for long term storage. The programmerthus has precise object-level control over which components in an application must remain available duringa node crash and which ones, though persistent, the user can temporarily live without. Where appropriate,the programmer can delegate this decision to the user. In many other cases the structure of the data itselfsuggests to the programmer which objects ought to be replicated. For example, in a �lesystem, directoriesmight be replicated so that the name space is preserved even when portions of the actual data are unavail-able. This is an instance of the more general truth that it is often appropriate to replicate the internal nodeswhen objects can be organized in graphs.In comparison with other mechanisms for providing fault tolerance, our system is extremely easy to use.Unlike systems such as ISIS, Emerald's replication is not entirely invisible to the programmer. The decisionof whether, how much, and where to replicate is left to the programmer at the individual object level, withoutincreasing the complexity of the resulting source code.4 An Implementation of Lightweight ReplicationJust as the design change incorporating replication was guided by both the original computational model andthe existing implementation, the implementation of replication in Emerald was constructed carefully to �t theexisting runtime kernel code. Chronologically, object mobility was the �rst language feature implementinga linearization of Emerald objects, since it was a primary objective in the distributed systems research ofthe original Emerald implementors. Disk-based object checkpoint was added later; it required little newcode, but the existing linearization code had to be generalized since objects recovering from a crash do nothave live processes with activation records as do objects moving from node to node. Passive replication alsoutilizes the original linearization code written for object mobility. Since passive copies written to disk areidentical to those written to the network, no further change to these routines, which constitute roughly 7400lines of C code, were required.Support for an e�cient election protocol required more substantial changes. The replication node list wasadded to the object table entry for all global objects. Each checkpoint generates a new sequence number,which is also maintained in the object table. Another �eld was added to global objects' table entries tocontain the pointer to the object's passive image, if any. These changes in the data organization amount toa few bytes added overhead in maintaining the object table. The only other increase in space consumption isthat of the replicated copies of objects themselves. On a given node this amounts to no more than doublingthe space required to store a single object2; since up to �ve passive copies of an object may be maintained,the network-wide memory consumption could conceivably reach up to six times the amount required in the2keeping a copy on the node at which the active object is located makes sense only for mobile objects. This again suggeststhat object replication and mobility strategies should be interrelated.



Distributed Object Persistence, 11 July 1989 5absence of replication. For many applications, a relatively small fraction of the objects (and in particularnone of the local objects generated during basic operations) require replication in order to keep the systemoperational, and there is no reason for most replicated objects to maintain �ve passive copies. The spacerequirements are deemed very reasonable in light of the functionality obtained.The following table suggests that many if not most distributed applications fall into that class of problemsin which a small amount of replication in the form of object availability yields a large dividend in overallsystem functionality during faults.Service:Persistence Persistance and AvailabilityApplication:operating systems data programsfile systems data files (root or major) directoriesnetwork protocols messages services...graph problems leaves interior nodesAs has been noted above, Emerald's location and mobility protocols generally constitute a far greaterproportion of the computation than does the checkpoint operation. The �rst priority of the implementationwas to retain the lightweight, high performance nature of these operations. Similarly, within the checkpointsubsystem the checkpoint operation occurs orders of magnitude more frequently than the recovery mech-anism. With this in mind, the new replication-based checkpoint system has increased the performance ofthe checkpoint operation at the expense of a slower recovery phase. In particular, the new mechanism ofwriting to the network is considerably faster than writing to disk, especially for the common case of a disklessworkstation in which writing to disk involved network transmission anyhow.Passive replicated objects' ability to recover from a node crash long before disk recovery can occur ispurchased at the expense of added complexity in the implementation. In addition to the new electionprotocol for object recovery from the network, the disk-based recovery mechanism required extra logic toabort the recovery in the event that an object replica recovered on another node. Disk-based recovery isalready complicated by the fact that objects are mobile and can checkpoint on any available disk. Since diskrecovery is infrequent and the number of objects which are actually recovered o� disk is greatly reduced inthe new system, this slowdown in the disk-based recovery protocol is acceptable.Network-based recovery involves the election of one of the passive images as a new active copy of theobject. Although performance is a �rst consideration, care is also required to ensure that no obsolete copy ofthe object is ever recovered, undoing the e�ects of already completed operations. In order to guarantee this,it is necessary for any election protocol to maintain two properties: (a) a coterie, and (b) disk consistency.A coterie is simply a list of the sets of nodes which together would have the authority to elect a node torecover the object[?]. Coteries have the property that no two of the sets of nodes in the list have an emptyintersection; requiring a coterie simply guarantees that the object cannot be accidentally recovered twice inthe event of a network partition. Although a simple majority vote is not always required for a coterie, thecombinations of nodes which consistute a majority is a simple example of a viable (but nonoptimal) coterie.Disk consistency is the property that no copy of an object should be elected if a newer copy of thatobject has been written to stable store. The simplest way to guarantee this is to synchronously update allthe replicated copies of the object before writing to disk.Emerald's election protocol implements coterie establishment by gaining complete information about thecontents of the network. Since an election occurs only as the result of failure in the location protocol, thisinformation is obtained at no extra cost3. Location normally consists of an unreliable broadcast query forthe object; if no answer is received, the broadcast is followed by point to point queries of each node in3No extra network bandwidth cost. Machine cycle cost is limited to copying 32 additional bytes per location reply message.



Distributed Object Persistence, 11 July 1989 6the network. In addition to the boolean valued reply to the query for an active copy of the object, eachnode's reply packet now also includes the sequence number and nodelist of that node's replica, if any. Ifthis information is more recent than that on the querying node, it updates its object table with the newerinformation. Since the location protocol performs a reliable broadcast, any unsuccessful location attemptguarantees that the querying node will be informed of the most recent passive replica on the network.Election consists of sending an incarnation order including the sequence number of the desired replicato a selected node4. The nodelist is transmitted with each network-based checkpoint image, guaranteeingthat all nodes having a copy of the most recent checkpoint will agree as to which node is �rst on the list.Once an incarnation order is received on that node, it increments its sequence number. Incarnation orderswith an old sequence are ignored thus eliminating redundant orders from separate sources. Such situationscan occur if two di�erent nodes simultaneously notice that the active instance of some object has becomeunavailable.5 AnalysisThe mechanism described has been implemented and is running on Emerald networks consisting of suns orvaxen running BSD UNIX. Its performance e�ect upon very large distributed computations is under testing.On test cases of modest size replicated checkpoint is slightly faster than disk-based checkpoint when no faultsoccur (insert some �gure here). When a fault occurs the e�ects are dramatic. Lost objects are elected andrecovered in less than a second. Since elections take place only when the object is being located or invoked,they take place gradually on demand after a fault rather than all at once.In order to measure the e�ect of a replication system on distributed application performance, we presentanalysis in terms of a variety of resources related to time and space consumption. While the cost incurredby replication depends upon both the caution of the programmer and the number of checkpoints performed,the bene�t derived can be expressed as the time required for a given computation multiplied by the machinefault frequency. Short computations are more likely to complete before a machine fault occurs and lessexpensive to recompute in the event that a failure occurs while they are in progress.5.1 AvailabilityWe de�ne availability to be the probability that an object will remain continuously available duration anentire computation5. In an active replication scheme, or even most passive replication schemes, the availabil-ity measure is complicated by the possibility of failure during the processing of a state-modifying operation.The single-active-object model adopted by Emerald corresponds to a more tractable availability index givenby (1� FM)TWhere F is the node failure frequency, M is the replication multiplicity or in the case of Emerald thelength of the checkpoint-at nodelist, and T is the total time required by the computation.Availability is a useful measure which appears in several of the resource consumption equations givenbelow. It is the means by which the costs and bene�ts of replication can be evaluated for these variousresource equations. The availability equation presented above also gives the programmer a concrete meansof selecting and justifying a particular replication multiplicity based on the particular problem to be solved.In the examples presented below we present several applications of the above equation with a variety ofmodels. In each case, we assume a hypothetical processor which averages one failure lasting �fteen minutesevery two weeks. For the sake of concreteness we select some hypothetical distributed computation with aduration of an hour and a half.4we always choose the �rst node on the nodelist, which is programmer-speci�ed5This is di�erent from the de�nition given by [Long89], in which availability is an instantaneous measure and reliability isthe continuous measure we call availability.



Distributed Object Persistence, 11 July 1989 75.1.1 Example: A Pessimistic Failure ModelAssume for a moment machine failures without recovery6. In this case, the probability of a replicated objectremaining available for an entire computation is simply the probability that one of the processors will notfail during the entire computation. The e�ects of replication are very limited and do not correspond to theequation presented above. In the absence of replication this model yields an availability probability of(1� F )5400Processor failures are assumed independent. With a single replica the probability that one of the twocopies will remain available is1� ((1� (1� F )5400)2)Extended to �ve replicas:1� ((1� (1� F )5400)6)5.1.2 Example: Static Replica Nodelist AssignmentA more realistic model is one in which processors fail and recover. Even if the Emerald programmer is lazyand only speci�es a one-time selection of nodes for replication, the probability that the object will remainavailable is greatly improved. More precisely, failure corresponds not to the probability that all involvedprocessors will go down some time during the computation, but to the probability that all involved processorswill be down at the same at time at some point in the computation.Without replication the probability remainsA = (1� :000741)5400 =Given a single replica on the system this becomesA = (1� :000742)5400 =Selecting a maximum replication multiplicity of 5 yieldsA = (1� :000746)5400 =5.1.3 Example: Dynamic Replica Nodelist AssignmentThe above �gures assume a trivial replication strategy with a single node list assignment performed duringinitialization. In reality, it is easy to dynamically reassign the replica nodelist whenever a node crashes7. Thise�ectively reduces the chance of unavailability from overlap period (when will M nodes be simultaneouslydown?) to catastrophe (when will M nodes crash at the same instant?). The e�ects are comparable to thosedelivered by Pu's Regeneration Algorithm [Pu].The e�ect of dynamic nodelist assignment is to cause the perceived failure frequency to be calculated basedon the number of failures rather than the total downtime due to failure. For instance, in the hypotheticalsituation presented above, coding an application with dynamic nodelist assignment reduces the basic failureprobability from .000744 to .0000008. The above equations then become:Given a single replicaA = (1� :00000082)5400 =Selecting a maximum replication multiplicity of 5 yieldsA = (1� :00000086)5400 =5.2 Computation DelayComputation delay is a measure of the total time from job submission to completion. Clearly, it is the mostimportant measure in interactive user-oriented applications such as editors and shells. A primary bene�t ofreplication is to bound computation delay due to object unavailability by some small factor dependent uponapplication size and distribution characteristics as well as the machine failure rate.6An Emerald programmerwould have to go out of his way to implement this pessimisticmodel, but it is useful for comparison.7There are granularity assumptions implicit in this argument, such as the assumption that checkpoints happen more oftenthan node crashes



Distributed Object Persistence, 11 July 1989 8Since replicated objects lost in a machine failure are recovered as they are needed, applications will beable to proceed long before the system has recovered all of the objects which were on the crashed node. Inaddition, by avoiding disk writes many applications' absolute computation delay are reduced by checkpointingto the network instead of to disk.5.3 Machine Cycle ConsumptionMachine cycle consumption is a measure of the total number of cycles consumed by the computation. Theprimary checkpoint cycle cost is linearization which is una�ected by switching from disk-based to network-based checkpoint. Replication requires additional cycles on all nodes which receive and maintain copiesof other nodes' objects. The election protocol employed by Emerald requires minimal computation. Inthe event of machine failure, absence of replication requires additional cycles for exception handlers. Mostapplications do not handle exceptions properly and require restarting and recomputation. In the case of verylong computations this cycle cost becomes prohibitive.5.4 Network Bandwidth CostsNetwork bandwidth costs measure consumption of network time, usually expressed in packet counts. Network-based replication requires an allocation of packets proportional to the number of checkpoint operations.Again, in the event of failure, the absence of replication in most current systems results in a great deal ofadded packets during exception handling and/or recomputation costs.5.5 Main Memory RequirementsMain memory requirements measure the total number of bytes of mainmemory utilitized by the computation.Replication increases memory consumption by a small programmer-speci�ed factor for those objects whichare replicated, which amount to a small fraction of the number of objects generated by the computation.Intuitively this is the amount of space redundancy required to ensure forward progress in the computationdespite infrequent machine failures.6 SummaryObject persistence in Emerald is a relatively low-level, high-performance form of fault tolerance. It greatlyreduces the computation delay incurred during machine faults. Its achieves machine cycle e�ciency bychoosing passive replication over active or semi-passive replication, avoiding a great deal of synchronizationand communications costs during normal computation. Active replication has its merits in terms of improvedlocality of access, but this service is not always useful and is separable from the objective of fault handling.By gathering election protocol information during Emerald's location protocol, Emerald sends only oneadditional message per election, obtaining very high network bandwidth e�ciency. Replication does requirea commitment in terms of replica packets sent and space allocated on participating nodes. The replicapacket costs are o�set at least in part by the reduction of exception handling packets and recomputationcosts incurred in the event of a fault. The space requirements are bounded by some small factor of individualobject size and are limited to some small proportion of the objects generated by the distributed computation.The end result is a dramatic improvement in service at a modest cost.


